A low frequency tunable miniature inertial pendulum energy harvester for underwater mooring platforms is proposed. This apparatus is a horizontal rotational energy harvester with a rolling pendulum. Accordingly, it can harvest energy from the rotational base excitation associated with low frequency over the range of 0.1 Hz to 0.4 Hz, even with large amplitude. Moreover, the natural frequency can be adjusted by geometrical tenability, manipulating the angular orientation of the layout of the harvester, for enhancing energy harvesting. The energy harvesting performance of the device is investigated through numerical simulations and experimental measurements. The harvester proposed in this work can be utilized on miniature ocean platforms over a broad low-frequency range of 0.1 Hz–0.4 Hz.

1
Babarit
,
A.
,
Clément
,
A. H.
, and
Gilloteaux
,
J. C.
, in
ASME 2005 24th International Conference on Offshore Mechanics and Arctic Engineering
(
American Society of Mechanical Engineers
,
2005
), pp.
703
712
.
2
Bernitsas
,
M.
, “
Out of the vortex
,”
Mech. Eng.
132
(
4
),
22
(
2010
).
3
Clément
,
A.
,
Babarit
,
A.
,
Gilloteaux
,
J. C.
, et al., in
Proceedings of the 6th Wave and Tidal Energy Conference
,
Glasgow
(
2005
).
4
Cordonnier
,
J.
,
Gorintin
,
F.
,
De Cagny
,
A.
, et al., “
SEAREV: Case study of the development of a wave energy converter
,”
Renew. Energy
80
,
40
52
(
2015
).
5
Ding
,
W.
,
Song
,
B.
,
Mao
,
Z.
, et al., “
Laboratory experiments on the energy extraction of a sealed ocean kinetic energy harvester for underwater mooring platforms
,”
J. Renew. Sustain. Energy
7
(
6
),
063107
(
2015
).
6
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
, “
A piezomagnetoelastic structure for broadband vibration energy harvesting
,”
Appl. Phys. Lett.
94
(
25
),
254102
(
2009
).
7
Erturk
,
A.
and
Inman
,
D. J.
, “
Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling
,”
J. Sound Vibration
330
(
10
),
2339
2353
(
2011
).
8
Fossen
,
T. I.
,
Guidance and Control of Ocean Vehicles
(
John Wiley & Sons Inc.
,
1994
).
9
Hu
,
J.
,
Kawamura
,
H.
,
Hong
,
H.
, et al., “
A review on the currents in the South China Sea: Seasonal circulation, South China Sea warm current and Kuroshio intrusion
,”
J. Oceanogr.
56
(
6
),
607
624
(
2000
).
10
Jang
,
S. J.
,
Kim
,
I. H.
,
Jung
,
H. J.
, and
Lee
,
Y. P.
A tunable rotational energy harvester for low frequency vibration
,”
Appl. Phys. Lett.
99
(
13
),
134102
(
2011
).
11
Josset
,
C.
,
Babarit
,
A.
, and
Clément
,
A. H.
, “
A wave-to-wire model of the SEAREV wave energy converter
,”
Proc. Inst. Mech. Eng. Part M: J. Eng. Marit. Environ.
221
(
2
),
81
93
(
2007
).
12
Krawczewicz
,
M.
and
Greene
,
E.
, Micro Ocean Renewable Energy,
2010
, see http://www.ericgreeneassociates.com.
13
Mao
,
Z.
and
Yan
,
S.
, “
Design and analysis of the thermal-stress coupled topology optimization of the battery rack in an AUV
,”
Ocean Eng.
148
,
401
411
(
2018
).
14
Tian
,
W.
,
Song
,
B.
, and
Mao
,
Z.
, “
Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms
,”
Int. J. Naval Arch. Ocean Eng.
5
(
4
),
625
634
(
2013
).
15
Xu
,
G.
,
Shen
,
W.
, and
Wang
,
X.
, “
Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey
,”
Sensors
14
(
9
),
16932
16954
(
2014
).
16
Zhang
,
Y.
,
Liu
,
Y.
,
Wu
,
J.
, et al., in
Proceedings of the 13th China Ocean (Shore) Engineering Symposium
,
Nanjing
(
2007
).

Supplementary Material

You do not currently have access to this content.