We have investigated the effects of the number of repetition (N) of ferromagnetic/nonmagnetic bilayers on the magnetic property and current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) in [Co2Fe(Al0.5Si0.5) (CFAS)/Ag]N multilayer for a potential magnetic field sensor application. The antiferromagnetic interlayer exchange coupling (AFM-IEC) between CFAS layers through the Ag(2.1 nm) spacer realized an anti-parallel magnetization configuration between the adjacent CFAS layers with N up to 6, which led to the stable linear response of magnetoresistance (MR) against a magnetic field in the range of 60-70 mT. The resistance change-area product (ΔRA) and the MR ratio were monotonically increased with N from 6.6 mΩ μm2 and 16% for N = 1 (CFAS/Ag/CFAS trilayer) to 23 mΩ μm2 and 43% for N = 6, respectively, giving an enhancement of field sensitivity with N up to 4.5%/mT. We also found nearly 3 times smaller non-linearity (1.2% Full Scale) in the device with N = 6 compared to that with N = 1. This study suggests a potential of Heusler-alloy based multilayer CPP-GMR device having AFM-IEC for magnetic field sensor applications.

1.
C.
Reig
,
S. C.
de Freitas
, and
S. C.
Mukhopadhyay
, “
Giant magnetoresistance (GMR) sensors: From basis to state-of-the-art applications
,” in
Smart Sensors, Measurement and Instrumentation
(
Springer-Verlag
,
Berlin
,
Germany
,
2013
), Vol. 6.
2.
R.
Weiss
,
R.
Mattheis
, and
G.
Reiss
,
Meas. Sci. Technol.
24
,
082001
(
2013
).
3.
I.
Ennen
,
D.
Kappe
,
T.
Rempel
,
C.
Glenske
, and
A.
Hütten
,
Sensors
16
,
904
(
2016
).
4.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F.
Nguyen Van Dau
, and
F.
Petroff
,
Phys. Rev. Lett.
61
,
2472
(
1998
).
5.
S.
Plaskett
and
T. R.
McGuire
,
J. Appl. Phys.
73
,
6378
(
1993
).
6.
E. Y.
Tsymbal
and
D. G.
Pettifor
,
Solid State Phys.
56
,
113
(
2001
).
7.
S. F.
Lee
,
W. P.
Pratt
, Jr.
,
R.
Loloee
,
P. A.
Schroeder
, and
J.
Bass
,
Phys. Rev. B
46
(
1
),
548
(
1992
).
8.
D.
Bozec
,
M. A.
Howson
, and
B. J.
Hickey
,
Phys. Rev. Lett.
85
(
6
),
1314
(
2000
).
9.
M. A. M.
Gijs
and
G. E. W.
Bauer
,
Adv. Phys.
46
(
3/4
),
285
(
1997
).
10.
K.
Yakushiji
,
K.
Saito
,
S.
Mitani
,
K.
Takanashi
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Lett.
88
,
222504
(
2006
).
11.
T.
Iwase
,
Y.
Sakuraba
,
S.
Bosu
,
K.
Saito
,
S.
Mitani
, and
K.
Takanashi
,
Appl. Phys. Express
2
,
63003
(
2009
).
12.
T. M.
Nakatani
,
T.
Furubayashi
, and
K.
Hono
,
J. Appl. Phys.
109
,
07B724
(
2011
).
13.
Y.
Sakuraba
,
M.
Ueda
,
Y.
Miura
,
K.
Sato
,
S.
Bosu
,
K.
Saito
,
M.
Shirai
,
T. J.
Konno
, and
K.
Takanashi
,
Appl. Phys. Lett.
101
,
252408
(
2012
).
14.
H.
Narisawa
,
T.
Kubota
, and
K.
Takanashi
,
Appl. Phys. Express
8
,
063008
(
2015
).
15.
Z.
Diao
,
M.
Chapline
,
Y.
Zheng
,
C.
Kaiser
,
A.
Ghosh Roy
,
C. J.
Chien
,
C.
Shang
,
Y.
Ding
,
C.
Yang
,
D.
Marui
,
Q.
Leng
,
M.
Pakala
,
M.
Oogane
, and
Y.
Ando
,
J. Magn. Magn. Mater.
356
,
73
(
2014
).
16.
T.
Kubota
,
Y.
Ina
,
Z.
Wen
,
H.
Narisawa
, and
K.
Takanashi
,
Phys. Rev. Mater.
1
,
044402
(
2017
).
17.
Y.
Du
,
T.
Furubayashi
,
T. T.
Sasaki
,
Y.
Sakuraba
,
Y. K.
Takahashi
, and
K.
Hono
,
Appl. Phys. Lett.
107
,
112405
(
2015
).
18.
J. W.
Jung
,
Y.
Sakuraba
,
T.
Sasaki
,
Y.
Miura
, and
K.
Hono
,
Appl. Phys. Lett.
108
,
102408
(
2016
).
19.
J.
Chen
,
J.
Liu
,
Y.
Sakuraba
,
H.
Sukegawa
,
S.
Li
, and
K.
Hono
,
APL Mater.
4
,
56104
(
2016
).
20.
N.
Hase
,
T. M.
Nakatani
,
S.
Kasai
,
Y. K.
Takahashi
,
T.
Furubayashi
, and
K.
Hono
,
J. Magn. Magn. Mater.
324
,
440
(
2012
).
21.
T.
Furubayashi
,
Y. K.
Takahashi
,
T. T.
Sasaki
, and
K.
Hono
,
J. Appl. Phys.
118
,
163901
(
2015
).
22.
S.
Li
,
Y. K.
Takahashi
,
Y.
Sakuraba
,
J.
Chen
,
T.
Furubayashi
,
O.
Mryasov
,
S.
Faleev
, and
K.
Hono
,
J. Appl. Phys.
119
,
093911
(
2016
).
23.
T. M.
Nakatani
and
J. R.
Childress
,
J. Appl. Phys.
117
,
243908
(
2015
).
24.
S.
Kasai
,
Y. K.
Takahashi
,
P.-H.
Cheng
,
Ikhtiar
,
T.
Ohkubo
,
K.
Kondou
,
Y.
Otani
,
S.
Mitani
, and
K.
Hono
,
Appl. Phys. Lett.
109
,
032409
(
2016
).
25.
T. M.
Nakatani
,
S.
Mitani
,
T.
Furubayashi
, and
K.
Hono
,
Appl. Phys. Lett.
99
,
182505
(
2011
).
26.
A. V.
Silva
,
D. C.
Leitao
,
J.
Valadeiro
,
J.
Amaral
,
P. P.
Freitas
, and
S.
Cardoso
,
Eur. Phys. J. Appl. Phys.
72
,
10601
(
2015
).
27.
Z. Q.
Lei
,
G. J.
Li
,
W. F.
Egelhoff
, Jr
.,
P. T.
Lai
, and
P. W. T.
Pong
,
IEEE Trans. Magn.
47
(
3
),
602
(
2011
).
28.
T.
Valet
and
A.
Fert
,
Phys. Rev. B
48
,
7099
(
1993
).
29.
N.
Strelkov
,
A.
Vedyaev
, and
B.
Dieny
,
J. Appl. Phys.
94
,
3278
(
2003
).
30.
Z.
Wen
,
T.
Kubota
,
T.
Yamamoto
, and
K.
Takanashi
,
Appl. Phys. Lett.
108
,
232406
(
2016
).
31.
Z.
Wen
,
T.
Kubota
,
Y.
Ina
, and
K.
Takanashi
,
Appl. Phys. Lett.
110
,
102401
(
2017
).
32.
D.
Suess
 et al.,
IEEE Trans. Magn.
45
,
88
(
2009
).
33.
Y.
Nakano
,
M.
Oogane
,
H.
Naganumua
, and
Y.
Ando
,
IEEE Trans. Magn.
51
,
4005104
(
2015
).
You do not currently have access to this content.