Atom probe tomography and secondary ion mass spectrometry were used to investigate the effects of carbon (C) co-implantation and subsequent annealing at 600 to 1200 °C on the behavior of implanted boron (B) atoms in silicon. When B alone was implanted, annealing at 600 to 800 °C caused it to form clusters in the peak region (1020 cm−3) of the concentration profile, and diffusion only occurred in the low-concentration tail region (<1018 cm−3), which is thought to be the well-known transient enhanced diffusion. However, when co-implantation with C was performed, this diffusion was almost completely suppressed in the same annealing temperature range. In the absence of C implantation, annealing at 1000 °C caused B clusters to begin to dissolve and B to diffuse out of the peak concentration region. However, this diffusion was also suppressed by C implantation because C atoms trapped B atoms in the kink region found at the B concentration level of 2 × 1019 cm−3. At 1200 °C, B clusters were totally dissolved and a strong B diffusion occurred. In contrast to lower annealing temperatures, this diffusion was actually enhanced by C implantation. It is believed that Si interstitials play an important role in the interaction between B and C. This kind of comprehensive investigation yields important information for optimizing ion implantation and annealing processes.

1.
B. J.
Pawlak
,
T.
Janssens
,
B.
Brijs
,
W.
Vandervorst
,
E. J. H.
Collart
,
S. B.
Felch
, and
N. E. B.
Cowern
, “
Effect of amorphization and carbon co-doping on activation and diffusion of boron in silicon
,”
Appl. Phys. Lett.
89
,
062110
(
2006
).
2.
P. A.
Stolk
,
H.-J.
Gossmann
,
D. J.
Eaglesham
,
D. C.
Jacobson
,
C. S.
Rafferty
,
G. H.
Gilmer
,
M.
Jaraíz
,
J. M.
Poate
,
H. S.
Luftman
, and
T. E.
Haynes
, “
Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon
,”
J. Appl. Phys.
81
,
6031
(
1997
).
3.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Lindsay
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
, “
Transient enhanced diffusion of boron in Si
,”
J. Appl. Phys.
91
,
8919
(
2002
).
4.
J.
Zhu
,
T. D.
dela Rubia
,
L. H.
Yang
, and
C.
Mailhiot
, “
Ab initio pseudopotential calculations of B diffusion and pairing in Si
,”
Phys. Rev. B
54
,
4741
(
1996
).
5.
H.
Bracht
,
H. H.
Silvestri
,
I. D.
Sharp
, and
E. E.
Haller
, “
Self- and foreign-atom diffusion in semiconductor isotope heterostructures. II. Experimental results for silicon
,”
Phys. Rev. B
75
,
035211
(
2007
).
6.
B.
Sadigh
,
T. J.
Lenosky
,
S. K.
Theiss
,
M.-J.
Caturla
,
T.
Diaz de la Rubia
, and
M. A.
Foad
, “
Mechanism of boron diffusion in silicon: An ab initio and kinetic Monte Carlo study
,”
Phys. Rev. Lett.
83
,
4341
(
1999
).
7.
W.
Windl
,
M. M.
Bunea
,
R.
Stumpf
,
S. T.
Dunham
, and
M. P.
Masquelier
, “
First-principles study of boron diffusion in silicon
,”
Phys. Rev. Lett.
83
,
4345
(
1999
).
8.
F.
Cristiano
,
X.
Hebras
,
N.
Cherkashin
, and
A.
Claverie
, “
Clusters formation in ultralow-energy high-dose boron-implanted silicon
,”
Appl. Phys. Lett.
83
,
5407
(
2003
).
9.
P. A.
Stolk
,
H-J
Gossmann
,
D. J.
Eaglesham
,
D. C.
Jacobson
, and
J. M.
Poate
, “
Trap-limited interstitial diffusion and enhanced boron clustering in silicon
,”
Appl. Phys. Lett.
66
,
568
(
1995
).
10.
L.
Pelaz
,
G. H.
Gilmer
,
H.-J.
Gossmann
, and
C. S.
Rafferty
, “
B cluster formation and dissolution in Si: A scenario based on atomistic modeling
,”
Appl. Phys. Lett.
74
,
3657
(
1999
).
11.
J.
Zhang
,
K.
Tse
,
M.
Wong
,
Y.
Zhang
, and
J.
Zhuy
, “
A brief review of co-doping
,”
Front. Phys.
11
,
117405
(
2016
).
12.
M.
Uematsu
,
K.
Matsubara
, and
K. M.
Itoh
, “
Simultaneous observation of the diffusion of self-atoms and co-implanted boron and carbon in silicon investigated by isotope heterostructures
,”
Jpn. J. Appl. Phys.
53
,
071302
(
2014
).
13.
H.
Itokawa
,
Y.
Agatsuma
,
N.
Aoki
,
N.
Uchitomi
, and
I.
Mizushima
, “
Contribution of carbon to activation and diffusion of boron in silicon
,”
Jpn. J. Appl. Phys.
49
,
04DAD6
(
2010
).
14.
B.
Han
,
Y.
Shimizu
,
J.
Wipakorn
,
K.
Nishibe
,
Y.
Tu
,
K.
Inoue
,
N.
Fukata
, and
Y.
Nagai
, “
Boron distributions in individual Core-Shell Ge/Si and Si/Ge heterostructured nanowires
,”
Nanoscale
8
,
19811
(
2016
).
15.
K.
Inoue
,
F.
Yano
,
A.
Nishida
,
H.
Takamizawa
,
T.
Tsunomura
,
Y.
Nagai
, and
M.
Hasegawa
, “
Dopant distribution in gate electrode of n- and p-type metal-oxide-semiconductor field effect transistor by laser-assisted atom probe
,”
Appl. Phys. Lett.
95
,
043502
(
2009
).
16.
B.
Han
,
H.
Takamizawa
,
Y.
Shimizu
,
K.
Inoue
,
Y.
Nagai
,
F.
Yano
,
Y.
Kunimune
,
M.
Inoue
, and
A.
Nishida
, “
Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography
,”
Appl. Phys. Lett.
107
,
023506
(
2015
).
17.
D.
Blavette
,
E.
Cadel
,
O.
Cojocaru-Mirédin
, and
B.
Deconihout
, “
The investigation of boron-doped silicon using atom probe tomography
,”
IOP Conf. Ser. Mater. Sci. Eng.
7
,
012004
(
2010
).
18.
K.
Thompson
,
J. H.
Booske
,
D. J.
Larson
, and
T. F.
Kelly
, “
Three-dimensional atom mapping of dopants in Si nanostructures
,”
Appl. Phys. Lett.
87
,
052108
(
2005
).
19.
M.
Ngamo
,
S.
Duguay
,
F.
Cristiano
,
K.
Daoud-Ketata
, and
P.
Pareige
, “
Atomic scale study of boron interstitial clusters in ion-implanted silicon
,”
J. Appl. Phys.
105
,
104904
(
2009
).
20.
Y.
Shimizu
,
H.
Takamizawa
,
K.
Inoue
,
T.
Toyama
,
Y.
Nagai
,
N.
Okada
,
M.
Kato
,
H.
Uchida
,
F.
Yano
,
T.
Tsunomura
,
A.
Nishida
, and
T.
Mogami
, “
Impact of carbon coimplantation on boron behavior in silicon: Carbon-boron coclustering and suppression of boron diffusion
,”
Appl. Phys. Lett.
98
,
232101
(
2011
).
21.
Y.
Shimizu
,
H.
Takamizawa
,
K.
Inoue
,
F.
Yano
,
S.
Kudo
,
A.
Nishida
,
T.
Toyama
, and
Y.
Nagai
, “
Impact of carbon co-implantation on boron distribution and activation in silicon studied by atom probe tomography and spreading resistance measurements
,”
Jpn. J. Appl. Phys.
55
,
026501
(
2016
).
22.
F. F.
Morehead
and
B. L.
Crowder
, “
A model for the formation of amorphous Si by ion bombardment
,”
Radiat. Eff.
6
,
27
(
1970
).
23.
M.
Miller
,
K.
Russell
,
K.
Thompson
,
R.
Alvis
, and
D.
Larson
, “
Review of atom probe FIB-based specimen preparation methods
,”
Microsc. Microanal.
13
,
428
(
2007
).
24.
Y.
Tu
,
H.
Takamizawa
,
B.
Han
,
Y.
Shimizu
,
K.
Inoue
,
T.
Toyama
,
F.
Yano
,
A.
Nishida
, and
Y.
Nagai
, “
Influence of laser power on atom probe tomographic analysis of boron distribution in silicon
,”
Ultramicroscopy
173
,
58
(
2017
).
25.
J.
Plummer
,
Silicon VLSI Technology: Fundamentals, Practice and Modeling
(
Prentice Hall
,
2009
).
26.
H.
Takamizawa
,
K.
Inoue
,
Y.
Shimizu
,
T.
Toyama
,
F.
Yano
,
T.
Tsunomura
,
A.
Nishida
,
T.
Mogami
, and
Y.
Nagai
, “
Channel dopant distribution in metal-oxide-semiconductor field-effect transistors analyzed by laser-assisted atom probe tomography
,”
Appl. Phys. Express
4
,
036601
(
2011
).
27.
B.
Gault
,
M. P.
Moody
,
J. M.
Cairney
, and
S. P.
Ringer
,
Atom Probe Microscopy
(
Springer
,
New York
,
2012
).
28.
S.
Duguay
,
T.
Philippe
,
F.
Cristiano
, and
D.
Blavette
, “
Direct imaging of boron segregation to extended defects in silicon
,”
Appl. Phys. Lett.
97
,
242104
(
2010
).
29.
S.
Koelling
,
O.
Richard
,
H.
Bender
,
M.
Uematsu
,
A.
Schulze
,
G.
Zschaetzsch
,
M.
Gilbert
, and
W.
Vandervorst
, “
Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon
,”
Nano Lett.
13
,
2458
(
2013
).
30.
G. L.
Vick
and
K. M.
Whittle
, “
Solid solubility and diffusion coefficients of boron in silicon
,”
J. Electrochem. Soc.
116
,
1142
(
1969
).
31.
T.
Philippe
,
S.
Duguay
,
D.
Mathiot
, and
D.
Blavette
, “
Atomic scale evidence of the suppression of boron clustering in implanted silicon by carbon coimplantation
,”
J. Appl. Phys.
109
,
23501
(
2011
).
32.
S.
Mirabella
,
D.
Salvador
,
E.
Bruno
,
E.
Napolitani
,
E. F.
Pecora
,
S.
Boninelli
, and
F.
Priolo
, “
Mechanism of boron diffusion in amorphous silicon
,”
Phys. Rev. Lett.
100
,
155901
(
2008
).
33.
S.
Mirabella
,
A.
Coati
,
D.
De Salvador
,
E.
Napolitani
,
A.
Mattoni
,
G.
Bisognin
,
M.
Berti
,
A.
Carnera
,
A. V.
Drigo
,
S.
Scalese
,
S.
Pulvirenti
,
A.
Terrasi
, and
F.
Priolo
, “
Interaction between self-interstitials and substitutional C in silicon: Interstitial trapping and C clustering mechanism
,”
Phys. Rev. B
65
,
45209
(
2002
).
34.
M. K.
Miller
and
E. A.
Kenik
, “
Atom probe tomography: A technique for nanoscale characterization
,”
Microsc. Microanal.
10
,
336
(
2004
).
35.
S.
Mukherjee
,
N.
Kodali
,
D.
Isheim
,
S.
Wirths
,
J. M.
Hartmann
,
D.
Buca
,
D. N.
Seidman
, and
O.
Moutanabbir
, “
Short-range atomic ordering in nonequilibrium silicon-germanium-tin semiconductors
,”
Phys. Rev. B
95
,
161402(R)
(
2017
).
36.
S.
Jwa
,
J.
Bang
, and
K. J.
Chang
, “
Chemical bonding and diffusion of B dopants in C-predoped Si
,”
Phys. Rev. B
80
,
75206
(
2009
).
37.
M.
Uematsu
, “
Diffusion of co-implanted carbon and boron in silicon and its effect on excess self-interstitials
,”
J. Appl. Phys.
111
,
073517
(
2012
).

Supplementary Material

You do not currently have access to this content.