We investigate here the structural phase transformation and electrical resistive switching properties of TiO2 thin films (80 nm) after their self-ion implantation with 50 keV Ti+ ions at several fluences. UV-Raman, grazing incidence x-ray diffraction (GIXRD), transmission electron microscopy, x-ray photoelectron spectroscopy, and atomic force microscopy techniques have been utilized to investigate the modifications in thin films. Both, the as-grown and ion implanted, films display mixed phases of rutile (R) and anatase (A). Surprisingly, however, a phase transition from A to R is observed at a critical fluence, where some anatase content transforms into rutile. This A to R transformation increases with additional fluence. The critical fluence found by GIXRD is slightly smaller (1×1013 ions/cm2) than from UV-Raman (1×1014 ions/cm2), indicating the first initiation of phase transformation probably in bulk. All the films contain anatase in nanocrystalline form also and the phase transformation seems to take place via aggregation of anatase nanoparticles. Thin films also show the presence of oxygen vacancies (OV) Ti3+, whose number grows with fluence. These OV as well as thermal spikes created during Ti+ ion implantation are also crucial for the A-R transition. After implantation at the highest fluence, TiO2 thin films show bipolar resistive switching behavior. The development of conducting filaments, formed by the migration of many oxygen vacancies generated during ion implantation, can be responsible for this behavior.

1.
H.
Li
,
Y.
Zhang
,
S.
Wang
,
Q.
Wu
, and
C.
Liu
,
J. Hazard. Mater.
169
,
1045
(
2009
).
3.
E.
Manikandan
,
G.
Kavitha
, and
J.
Kennedy
,
Ceram. Int.
40
,
16065
(
2014
).
4.
B.
Sathyaseelan
,
E.
Manikandan
,
V.
Lakshmanan
,
I.
Baskaran
,
K.
Sivakumar
,
R.
Ladchumananandasivam
,
J.
Kennedy
, and
M.
Maaza
,
J. Alloy Compd
671
,
486
(
2016
).
5.
E.
Manikandan
,
M. K.
Moodley
,
S.
Sinha Ray
,
B. K.
Panigrahi
,
R.
Krishnan
,
N.
Padhy
,
K. G. M.
Nair
, and
A. K.
Tyagi
,
J. Nanosci. Nanotechnol.
10
,
5602
(
2010
).
6.
Q.
Gao
,
X.
Wu
, and
Y.
Fan
,
Dyes Pigm.
95
,
96
(
2012
).
7.
D. A. H.
Hanaor
and
C. C.
Sorrell
,
J. Mater. Sci.
46
,
855
(
2011
).
8.
K. J. D.
MacKenzie
,
Trans. J. Br. Ceram. Soc.
74
,
29
(
1975
).
9.
G. B.
Song
,
J. K.
Liang
,
F. S.
Liu
,
T. J.
Peng
, and
G. H.
Rao
,
Thin Sol. Films
491
,
110
(
2005
).
10.
H.
Zhang
and
J. F. J.
Banfield
,
Mater. Chem.
8
,
2073
(
1998
).
11.
S.
Vargas
,
R.
Arroyo
,
E.
Haro
, and
R.
Rodriguez
,
J. Mater. Res.
14
,
3932
(
1999
).
12.
A. A.
Gribb
and
J. F.
Banfield
,
Am. Mineral.
82
,
717
(
1997
).
13.
J.
Kennedy
,
P. P.
Murmu
,
E.
Manikandan
, and
S. Y.
Lee
,
J. Alloy Compd
616
,
614
(
2014
).
14.
K.
Thanigaiaru
,
J.
Ramana Ramya
,
S. C.
Vanithakumari
,
P.
Magudapathy
,
U.
Kamachi Mudali
,
K. G. M.
Nair
, and
S.
NarayanaKalkura
,
Mater. Lett.
153
,
182
(
2015
).
15.
K.
Thanigaiaru
,
K.
Elayaraja
,
P.
Magudapathy
,
U.
Kamachi Mudali
,
K. G. M.
Nair
,
M.
Sudarshan
,
J. B. M.
Krishna
,
A.
Chakraborty
, and
S.
Narayana Kalkura
,
Ceram. Int.
39
,
3027
(
2013
).
16.
F. T.
Thema
,
P.
Beukes
,
B. D.
Ngom
,
E.
Manikandan
, and
M.
Maaza
,
J. Alloy Compd
648
,
326
(
2015
).
17.
B. S.
Udai
,
P.
Compesh
,
C. A.
Dinesh
,
O.
Sunil
,
A. K.
Saif
,
Ghosh
Santanu
, and
K. A.
Devesh
,
J. Appl. Phys.
121
,
095308
(
2017
).
18.
M.
Nastasi
and
J.
Mayer
, Ion Implantation and Synthesis of Materials, Springer Series in Materials Science (Springer, 2006).
19.
S. M. S.
Privitera
,
A. M.
Mio
,
E.
Smecca
,
A.
Alberti
,
W.
Zhang
,
R.
Mazzarello
,
J.
Benke
,
C.
Persch
,
F.
La Via
, and
E.
Rimini
,
Phys. Rev. B
94
,
094103
(
2016
).
20.
P.
Sule
,
M.
Menyhard
, and
K.
Nordlund
,
Nucl. Instrum. Methods Phys. Res. B
211
,
524
(
2003
).
21.
V. V.
Ovchinnikov
, “Self-propagating phases transformations in metastable media induced by ion bombardment,” in Proc. XVI International Symposium on Discharges and Electrical Insulation in Vacuum 2259, edited by G. A. Mesyats (SPIE, Moscow, 1994), pp 605–608.
22.
D.
Kaoumi
,
A. T.
Motta
, and
R. C.
Birtcher
,
J. Appl. Phys.
104
,
073525
(
2008
).
23.
W. R.
Hiatt
and
T. W.
Hickmott
,
Appl. Phys. Lett.
6
,
106
(
1965
).
24.
I. G.
Baek
,
M. S.
Lee
,
S.
Seo
,
M. J.
Lee
,
D. H.
Seo
,
D. S.
Suh
,
J. C.
Park
,
S. O.
Park
,
H. S.
Kim
,
I. K.
Yoo
,
U. I.
Chung
, and
J. T.
Moon
, in
IEEE International Electron Devices Meeting, 2004. IEDM Technical Digest
, (
San Francisco, CA
, 13–15 December 2004), p.
587
.
25.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
,
Rep. Prog. Phys.
75
,
076502
(
2012
).
26.
A.
Barman
,
C. P.
Saini
,
P.
Sarkar
,
B.
Satpati
,
S. R.
Bhattacharyya
,
D.
Kabiraj
,
D.
Kanjilal
,
S.
Dhar
, and
A.
Kanjilal
,
J. Appl. Phys.
118
,
224903
(
2015
).
27.
J. F.
Ziegler
,
J. P.
Biersack
, and
M. D.
Ziegler
,
SRIM—The Stopping and Range of Ions in Matter
(
SRIM Co.
,
Chester
,
2008
).
28.
A. A.
Ibrahim
and
G.
Newaz
,
Thin Solid Films
517
,
4372
(
2009
).
29.
S. P. S.
Porto
,
P. A.
Fleury
, and
T. C.
Damen
,
Phys. Rev.
154
,
522
(
1967
).
30.
W. F.
Zhang
,
Y. L.
He
,
M. S.
Zhang
,
Z.
Yin
, and
Q.
Chen
,
J. Phys. D Appl. Phys.
33
,
912
(
2000
).
31.
S.
Dey
,
C.
Roy
,
A.
Pradhan
, and
S.
Varma
,
J. App. Phys.
87
,
1110
(
2000
).
32.
D.
Paramanik
and
S.
Varma
,
J. App. Phys.
101
,
023528
(
2007
).
33.
M.
Subrata
,
Appl. Surf. Sci.
258
,
4122
(
2012
).
34.
J. C.
Parker
and
R. W.
Siegel
,
J. Mater. Res.
5
,
1246
(
1990
).
35.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
,
Solid State Commun.
39
,
625
(
1981
).
36.
D.
Bersani
,
P. P.
Lottici
, and
X. Z.
Ding
,
Appl. Phys. Lett.
72
,
73
(
1998
).
37.
V.
Solanki
,
S.
Majumder
,
I.
Mishra
,
P.
Dash
,
C.
Singh
,
D.
Kanjilal
, and
S.
Varma
,
J. Appl. Phys.
115
,
124306
(
2014
).
38.
S. R.
Joshi
,
B.
Padmanabhan
,
A.
Chanda
,
V. K.
Malik
,
N. C.
Mishra
,
D.
Kanjilal
, and
S.
Varma
,
Appl. Phys. A
122
,
713
(
2016
).
39.
Z.
Zhao
,
X.
Zhang
,
G.
Zhang
,
Z.
Liu
,
D.
Qu
,
X.
Miao
,
P.
Feng
, and
Z.
Sun
,
Nano Res.
8
,
4061
(
2015
).
40.
Y.
Hu
,
H. L.
Tsai
, and
C. L.
Huang
,
Mater. Sci. Eng. A.
344
,
209
(
2003
).
41.
P. I.
Gouma
and
M. J.
Mills
,
J. Am. Ceram. Soc.
84
,
619
(
2001
).
42.
B. Strukov
Dmitri
,
S. Snider
Gregory
, and
R. Stewart
Duncan
,
Nature
453
,
80
(
2008
).
43.
H.-S.
Philip Wong
,
H.-Y.
Lee
,
S.
Yu
,
Y.-S.
Chen
,
Y.
Wu
,
P.-S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M.-J.
Tsai
,
Proc. IEEE
100
,
1951
(
2012
).
You do not currently have access to this content.