Accurate and efficient synaptic weight programming and vector-matrix multiplication are demonstrated using compound synapses constructed with ultralow power binary memristive devices having oxidized atomically thin two-dimensional hexagonal boron nitride (BNOx) filament formation layers. Experimental data of the resistive-switching current-voltage characteristics of BNOx memristors are used to formulate variation-aware models that enable statistically analyzing the trade-off between efficiency and accuracy as a function of the synaptic resolution (i.e., levels of synaptic weight programming). Results are compared with commonly reported oxide-based memristors indicating orders of magnitude (i.e., ∼105) improvements in power efficiency and ∼2-5× improvements in accuracy.

1.
H. S. P.
Wong
,
H. Y.
Lee
,
S.
Yu
,
Y. S.
Chen
,
Y.
Wu
,
P. S.
Chen
,
B.
Lee
,
F. T.
Chen
, and
M. J.
Tsai
, “
Metal-oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
2.
K.
Kim
,
S.
Gaba
,
D.
Wheeler
,
J. M.
Cruz-Albrecht
,
T.
Hussain
,
N.
Srinivasa
, and
W.
Lu
, “
A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications
,”
Nano Lett.
12
,
389
395
(
2012
).
3.
M.
Prezioso
,
B. D.
Hoskins
,
G. C.
Adam
,
K. K.
Likharev
, and
D. B.
Strukov
, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
,
61
64
(
2015
).
4.
S. B.
Eryilmaz
,
D.
Kuzum
,
S.
Yu
, and
H. P.
Wong
, “
Device and system level design considerations for analog-non-volatile-memory based neuromorphic architectures
,” in
2016 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
), pp.
4.1.1
4.1.6
.
5.
S.
Yu
,
P.
Chen
,
Y.
Cao
,
L.
Xia
,
Y.
Wang
, and
H.
Wu
, “
Scaling-up resistive synaptic arrays for neuro-inspired architecture: Challenges and prospect
,”
IEDM Technical Digest 2015 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2015
), pp.
17.3.1
17.3.4
.
6.
P.
Yao
,
H.
Wu
,
B.
Gao
,
S. B.
Eryilmaz
,
X.
Huang
,
W.
Zhang
,
Q.
Zhang
,
N.
Deng
,
L.
Shi
,
H. P.
Wong
, and
H.
Qian
, “
Face classification using electronic synapses
,”
Nat. Commun.
8
,
1
8
(
2017
).
7.
A.
Fantini
,
L.
Goux
,
R.
Degraeve
,
D. J.
Wouters
,
N.
Raghavan
,
G.
Kar
,
A.
Belmonte
,
Y.
Chen
,
B.
Govoreanu
, and
M.
Jurczak
, “
Intrinsic switching variability in HfO2 RRAM
,”
IEEE International Memory Workshop
(IEEE,
2013
), pp.
1
4
.
8.
C.
Li
 et al., “
Analogue signal and image processing with large memristor crossbars
,”
Nat. Electron.
1
,
52
(
2017
).
9.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
, “
Nanoscale memristor device as synapse in neuromorphic systems
,”
Nano Lett.
10
,
1297
1301
(
2010
).
10.
S.
Kim
,
S.
Choi
,
J.
Lee
, and
W. D.
Lu
, “
Tuning resistive switching characteristics of tantalum oxide memristors through Si doping
,”
ACS Nano
8
(
10
),
10262
10269
(
2014
).
11.
H.
Zhao
,
Z.
Dong
,
H.
Tian
,
D.
Dimarzi
,
M.
Han
,
L.
Zhang
,
X.
Yan
,
F.
Liu
,
L.
Shen
,
S.
Han
,
S.
Cronin
,
W.
Wu
, and
J.
Tice
, “
Atomically thin femtojoule memristive device
,”
Adv. Mater.
29
,
1703232
(
2017
).
12.
Z.
Dong
,
H.
Zhao
,
D.
Dimarzio
,
M.
Han
,
L.
Zhang
,
J.
Tice
,
H.
Wang
, and
J.
Guo
, “
Atomically thin CBRAM enabled by 2-D materials: Scaling behaviors and performance limits
,”
IEEE Trans. Electron Devices
65
,
4160
4166
(
2018
).
13.
J.
Bill
,
R.
Legenstein
, and
L. M.
Cederström
, “
A compound memristive synapse model for statistical learning through STDP in spiking neural networks
,”
Front Neurosci.
8
,
1
18
(
2014
).
14.
X.
Wu
and
V.
Saxena
, “Dendritic-inspired processing enables bio-plausible STDP in compound binary synapses,” e-print: arXiv:1801.02797.
15.
A.
Singha
,
B.
Muralidharan
, and
B.
Rajendran
, “Analog memristive time dependent learning using discrete nanoscale RRAM devices,” 2014 International Joint Conference on Neural Networks (IJCNN), Beijing China (IEEE,
2014
).
16.
S.
Yu
,
B.
Gao
,
Z.
Fang
,
H.
Yu
,
J.
Kang
, and
H. P.
Wong
, “
A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation
,”
Adv. Mater.
25
,
1774
1779
(
2013
).
17.
P. M.
Sheridan
,
F.
Cai
,
C.
Du
,
W.
Ma
,
Z.
Zhang
, and
W. D.
Lu
, “
Sparse coding with memristor networks
,”
Nat. Nanotechnol.
12
,
784
790
(
2017
).
18.
T.
Chang
,
S. J. K.
Kim
,
P.
Sheridan
,
S.
Gaba
, and
W.
Lu
, “
Synaptic behaviors and modeling of a metal oxide memristive device
,”
Appl. Phys. A Mater. Sci. Process.
102
,
857
863
(
2011
).
19.
P. M.
Sheridan
,
C.
Du
, and
W.
Lu
, “
Feature extraction using memristor networks
,” IEEE Transactions on Neural Networks and Learning Systems (IEEE, 2016), Vol. 27, No. 11, pp. 2327–2336.
20.
M.
Hu
,
J. P.
Strachan
,
Z.
Li
,
E. M.
Grafals
,
N.
Davila
,
C.
Graves
,
S.
Lam
,
N.
Ge
,
J. J.
Yang
, and
R. S.
Williams
, “Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication,” in Design Automation Conference 2016 (IEEE, 2016).
You do not currently have access to this content.