The development of an efficient neuromorphic computing system requires the use of nanodevices that intrinsically emulate the biological behavior of neurons and synapses. While numerous artificial synapses have been shown to store weights in a manner analogous to biological synapses, the challenge of developing an artificial neuron is impeded by the necessity to include leaking, integrating, firing, and lateral inhibition features. In particular, previous proposals for artificial neurons have required the use of external circuits to perform lateral inhibition, thereby decreasing the efficiency of the resulting neuromorphic computing system. This work therefore proposes a leaky integrate-and-fire neuron that intrinsically provides lateral inhibition, without requiring any additional circuitry. The proposed neuron is based on the previously proposed domain-wall magnetic tunnel junction devices, which have been proposed as artificial synapses and experimentally demonstrated for non-volatile logic. Single-neuron micromagnetic simulations are provided that demonstrate the ability of this neuron to implement the required leaking, integrating, and firing. These simulations are then extended to pairs of adjacent neurons to demonstrate, for the first time, lateral inhibition between neighboring artificial neurons. Finally, this intrinsic lateral inhibition is applied to a ten-neuron crossbar structure and trained to identify handwritten digits and shown via direct large-scale micromagnetic simulation for 100 digits to correctly identify the proper signal for 94% of the digits.

1.
V.
Balasubramanian
,
Proc. IEEE
103
,
1346
1358
(
2015
).
2.
F.
Akopyan
,
J.
Sawada
,
A.
Cassidy
,
R.
Alvarez-Icaza
,
J.
Arthur
,
P.
Merolla
,
N.
Imam
,
Y.
Nakamura
,
P.
Datta
,
G. J.
Nam
,
B.
Taba
,
M.
Beakes
,
B.
Brezzo
,
J. B.
Kuang
,
R.
Manohar
,
W. P.
Risk
,
B.
Jackson
, and
D. S.
Modha
,
IEEE Trans. Comput. Des. Integr. Circuits Syst.
34
,
1537
1557
(
2015
).
3.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
,
F.
Akopyan
,
B. L.
Jackson
,
N.
Imam
,
C.
Guo
,
Y.
Nakamura
,
B.
Brezzo
,
I.
Vo
,
S. K.
Esser
,
R.
Appuswamy
,
B.
Taba
,
A.
Amir
,
M. D.
Flickner
,
W. P.
Risk
,
R.
Manohar
, and
D. S.
Modha
,
Science
345
,
668
673
(
2014
).
4.
T. V.
Bliss
and
A. R.
Gardner-Medwin
,
J. Physiol.
232
,
357
374
(
1973
).
5.
A.
Delorme
,
J.
Gautrais
,
R.
Van Rullen
, and
S.
Thorpe
,
Neurocomputing
26–27
,
989
996
(
1999
).
6.
S.
Han
,
H.
Mao
, and
W. J.
Dally
, e-print arXiv:1510.00149 (
2015
).
7.
D. A.
Pomerleau
, in
International Conference on Neural Networks
(
1988
), pp.
143
150
.
9.
B.
Sengupta
and
M. B.
Stemmler
,
Proc. IEEE
102
,
738
750
(
2014
).
10.
G. F. D.
Betta
,
S.
Graffi
,
Z. M.
Kovacs
, and
G.
Masetti
,
IEEE Trans. Circuits Syst. II Analog Digit. Signal Process.
40
,
206
(
1993
).
11.
H. P.
Graf
,
L. D.
Jackel
, and
W. E.
Hubbard
, IEEE
J. Sel. Top. Quantum Electron.
3
,
41
49
(
1988
).
12.
A.
Masaki
,
Y.
Hirai
, and
M.
Yamada
,
IEEE Circuits Devices Mag.
6
,
12
17
(
1990
).
13.
J. J.
Yang
,
J.
Borghetti
,
D.
Murphy
,
D. R.
Stewart
, and
R. S.
Williams
,
Adv. Mater.
21
,
3754
3758
(
2009
).
14.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
519
(
1971
).
15.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
83
(
2008
).
16.
M.
Chu
,
B.
Kim
,
S.
Park
,
H.
Hwang
,
M.
Jeon
,
B. H.
Lee
, and
B. G.
Lee
,
IEEE Trans. Ind. Electron.
62
,
2410
2419
(
2015
).
17.
M.
Al-Shedivat
,
R.
Naous
,
G.
Cauwenberghs
, and
K. N.
Salama
,
IEEE J. Emerg. Sel. Top. Circuits Syst.
5
,
242
253
(
2015
).
18.
G.
Indiveri
,
B.
Linares-Barranco
,
R.
Legenstein
,
G.
Deligeorgis
, and
T.
Prodromakis
,
Nanotechnology
24
,
384010
(
2013
).
19.
G. L.
Gerstein
and
B.
Mandelbrot
,
Biophys. J.
4
,
41
68
(
1964
).
20.
H.
Markram
,
M.
Toledo-Rodriguez
,
Y.
Wang
,
A.
Gupta
,
G.
Silberberg
, and
C.
Wu
,
Nat. Rev. Neurosci.
5
,
793
(
2004
).
21.
T. C.
Jacob
,
S. J.
Moss
, and
R.
Jurd
,
Nat. Rev. Neurosci.
9
,
331
(
2008
).
22.
D.
Feldmeyer
,
G.
Qi
,
V.
Emmenegger
, and
J. F.
Staiger
,
Neuroscience
368
,
132
151
(
2018
).
23.
A.
Sengupta
and
K.
Roy
,
Appl. Phys. Rev.
4
,
041105
(
2017
).
24.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
,
Proc. IEEE
104
,
2024
2039
(
2016
).
25.
A.
Sengupta
and
K.
Roy
,
IEEE Trans. Circuits Syst. I
63
,
2267
2277
(
2016
).
26.
A.
Sengupta
,
Y.
Shim
, and
K.
Roy
,
IEEE Trans. Biomed. Circuits Syst.
10
,
1152
1160
(
2016
).
27.
A.
Sengupta
,
S. H.
Choday
,
Y.
Kim
, and
K.
Roy
,
Appl. Phys. Lett.
106
,
143701
(
2015
).
28.
G.
Srinivasan
,
A.
Sengupta
, and
K.
Roy
, in
Proceedings of DATE
(
2017
), pp.
530
535
.
29.
A.
Jaiswal
,
S.
Roy
,
G.
Srinivasan
, and
K.
Roy
,
IEEE Trans. Electron Devices
64
,
1818
1824
(
2017
).
30.
A.
Jaiswal
,
A.
Agrawal
,
P.
Panda
, and
K.
Roy
, e-print arXiv:1705.06942 (
2017
).
31.
A.
Sengupta
,
P.
Panda
,
P.
Wijesinghe
,
Y.
Kim
, and
K.
Roy
,
Sci. Rep.
6
,
1
9
(
2016
).
32.
J. A.
Currivan-Incorvia
,
S.
Siddiqui
,
S.
Dutta
,
E. R.
Evarts
,
J.
Zhang
,
D.
Bono
,
C. A.
Ross
, and
M. A.
Baldo
,
Nat. Commun.
7
,
10275
(
2016
).
33.
J. A.
Currivan
,
Y.
Jang
,
M. D.
Mascaro
,
M. A.
Baldo
, and
C. A.
Ross
,
IEEE Magn. Lett.
3
,
3000104
(
2012
).
34.
A.
Roohi
,
R.
Zand
, and
R. F.
Demara
,
IEEE Trans. Magn.
52
,
1
7
(
2016
).
35.
S.
Lequeux
,
J.
Sampaio
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
R.
Matsumoto
,
H.
Kubota
,
S.
Yuasa
, and
J.
Grollier
,
Sci. Rep.
6
,
31510
(
2016
).
36.
S.
Dutta
,
S. A.
Siddiqui
,
F.
Buttner
,
L.
Liu
,
C. A.
Ross
, and
M. A.
Baldo
,
IEEE/ACM Int. Symp. Nanoscale Archit. (NANOARCH)
(
2017
)
,
pp.
83
88
.
37.
Q.
Dong
,
K.
Yang
,
L.
Fick
,
D.
Blaauw
, and
D.
Sylvester
,
Proc. IEEE Int. Symp. Circuits Syst.
4
,
0
3
(
2017
).
38.
P.
Sheridan
,
W.
Ma
, and
W.
Lu
, in Proceedings of IEEE International Symposium Circuits and Systems (
2014
), pp.
1078
1081
.
39.
A. N.
Burkitt
,
Biol. Cybern.
95
,
97
112
(
2006
).
40.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
,
Nano Lett.
10
,
1297
1301
(
2010
).
41.
S.
ichi Amari
,
Biol. Cybern.
27
,
77
87
(
1977
).
42.
E.
Meir
,
G.
Von Dassow
,
E.
Munro
, and
G. M.
Odell
,
Curr. Biol.
12
,
778
786
(
2002
).
43.
Z. H.
Mao
and
S. G.
Massaquoi
,
IEEE Trans. Neural Netw.
18
,
55
69
(
2007
).
44.
J.
Lazzaro
,
S.
Ryckebusch
,
M. A.
Mahowald
, and
C. A.
Mead
, in
Adv. Neural Inf. Process Syst
(
1988
), pp.
703
711
.
45.
A. V.
Khvalkovskiy
,
V.
Cros
,
D.
Apalkov
,
V.
Nikitin
,
M.
Krounbi
,
K. A.
Zvezdin
,
A.
Anane
,
J.
Grollier
, and
A.
Fert
,
Phys. Rev. B Condens. Matter Mater. Phys.
87
,
2
6
(
2013
).
46.
S.
Emori
,
U.
Bauer
,
S. M.
Ahn
,
E.
Martinez
, and
G. S. D.
Beach
,
Nat. Mater.
12
,
611
616
(
2013
).
47.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
48.
X.
Hu
,
M. J.
Schultis
,
M.
Kramer
,
A.
Bagla
,
A.
Shetty
, and
J. S.
Friedman
,
IEEE Trans. Circuits Syst. I
2018
,
99
.
49.
C.
Bennett
,
J. E.
Lorival
,
F.
Marc
,
T.
Cabaret
,
B.
Jousselme
,
V.
Derycke
,
J. O.
Klein
, and
C.
Maneux
, “
Multiscaled simulation methodology for neuro-inspired circuits demonstrated with an organic memristor
,”
IEEE Trans. Multi-Scale Comput. Syst
. (published online).
50.
B.
Widrow
and
M. A.
Lehr
,
Proc. IEEE
78
,
1415
1442
(
1990
).
51.
J. A.
Currivan
,
S.
Siddiqui
,
S.
Ahn
,
L.
Tryputen
,
G. S. D.
Beach
,
M. A.
Baldo
, and
C. A.
Ross
,
J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom.
32
,
021601
(
2014
).
52.
K.
Tu
,
E.
Fernandez
,
H.
Almasi
,
W.
Wang
,
D. N.
Otero
,
K.
Ntetsikas
,
D.
Moschovas
,
A.
Avgeropoulos
, and
C. A.
Ross
,
Nanotechnology
29
,
275302
(
2018
).
53.
L.
Xue
,
A.
Kontos
,
C.
Lazik
,
S.
Liang
, and
M.
Pakala
,
IEEE Trans. Magn.
51
,
18
20
(
2015
).

Supplementary Material

You do not currently have access to this content.