Magnetic tunnel junctions (MTJs) operating in the superparamagnetic regime produce telegraphic signals that emulate neural spiking signals. Previous studies have characterized the random spiking signals produced by MTJs in terms of the percentage of time spent in the anti-parallel (AP) magnetization state (referred to as the “AP rate”) but ignore the switching rate of the MTJ. In this work, we demonstrate that with proper tuning of both an external bias field and a bias voltage, we can control the average dwell time in the AP-state and P-state pulses separately. Our data show that the AP rate can be tuned with bias voltages ranging from 310 mV to 460 mV and bias fields from −200 Oe to −230 Oe. The average dwell times in each state ranged from 225 ns to 285 μs and could be controlled separately. This suggests that neural spiking signals produced by MTJs can be decoded by both the spike rate and the spike count, which creates the possibility for increasing the information capacity in the rate coding scheme.

1.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
,
Nature
521
,
436
(
2015
).
2.
C.
Mead
,
Analog VLSI and Neural Systems
(
Addison-Wesley
,
Reading
,
MA
,
1989
).
3.
T. U.
Krautz
,
M.S. thesis
,
Ruhr-University Bochum
,
2014
.
4.
H.
Paugam-Moisy
and
S.
Bohte
, “
Computing with spiking neuron networks
,” in
Handbook of Natural Computing
, edited by
G.
Rozenberg
,
T.
Bäch
, and
J. N.
Kik
(
Springer
,
Berlin
,
Heidelberg
,
2012
), pp.
335
376
.
5.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
,
Proc. IEEE
14
,
2024
(
2016
).
6.
N.
Locatelli
,
A. F.
Vincent
,
A.
Mizrahi
,
J. S.
Friedman
,
D.
Vodenicare
,
J.-V.
Kim
,
J.-O.
Klein
,
W.
Zhao
,
J.
Grollier
, and
D.
Querlioz
, in
Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition
,
Grenoble, France
,
April 2015
, pp.
994
999
.
7.
J.-P.
Wang
,
S. S.
Sapatnekar
,
C. H.
Kim
,
P.
Crowell
,
S.
Koester
,
S.
Datta
,
K.
Roy
,
A.
Raghunathan
,
X. S.
Hu
,
M.
Niemier
,
A.
Naeemi
,
C.-L.
Chien
,
C.
Ross
, and
E.
Kawakami
, in
Proceedings of the Design Automation Conference
,
Austin, TX, USA
,
June 2017
.
8.
H.
Zhao
,
A.
Lyle
,
Y.
Zhang
,
P. K.
Amiri
,
G.
Rowlands
,
Z.
Zeng
,
J.
Katine
,
H.
Jiang
,
K.
Galatsis
,
K. L.
Wang
,
I. N.
Krivorotov
, and
J.-P.
Wang
,
J. Appl. Phys.
109
,
07C720
(
2011
).
9.
H.
Zhao
,
Y.
Zhang
,
P. K.
Amiri
,
J.
Katine
,
J. A.
Langer
,
H.
Jiang
,
I. N.
Krivorotov
,
K. L.
Wang
, and
J.-P.
Wang
,
IEEE Trans. Magn.
48
,
3818
(
2012
).
10.
T.
Aoki
,
Y.
Ando
,
M.
Oogane
, and
H.
Naganuma
,
Appl. Phys. Lett.
96
,
142502
(
2010
).
11.
W. H.
Choi
,
Y.
Lv
,
J.
Kim
,
A.
Deshpande
,
G.
Kang
,
J.-P.
Wang
, and
C. H.
Kim
, in
IEEE International Electron Devices Meeting
,
San Francisco, CA, USA
,
December 2014
, pp.
12.5.1
12.5.4
.
12.
A.
Fukushima
,
T.
Seki
,
K.
Yakushiji
,
H.
Kubota
,
H.
Imamura
,
S.
Yuasa
, and
K.
Ando
,
Appl. Phys. Exp.
7
,
083001
(
2014
).
13.
Y.
Lv
and
J.-P.
Wang
, in
IEEE International Electron Devices Meeting
,
San Francisco, CA, USA
,
December 2017
, pp.
36.2.1
36.2.4
.
14.
G.
Srinivasan
,
A.
Sengupta
, and
K.
Roy
, in
Proceedings of the Design, Automation, and Test in Europe Conference and Exhibition
,
Lausanne, Switzerland
,
March 2017
, pp.
530
535
.
15.
A.
Sengupta
,
M.
Parsa
,
B.
Han
, and
K.
Roy
,
IEEE Trans. Electron Devices
63
,
2963
(
2016
).
16.
D.
Zhang
,
L.
Zeng
,
Y.
Zhang
,
W.
Zhao
, and
J. O.
Klein
, in
IEEE/ACM International Symposium on Nanoscale Architectures
,
Beijing, China
,
July 2016
, pp.
173
178
.
17.
A.
Sengupta
,
P.
Panda
,
P.
Wijesinghe
,
Y.
Kim
, and
K.
Roy
,
Sci. Rep.
6
,
30039
(
2016
).
18.
D.
Zhang
,
L.
Zeng
,
F.
Gong
,
T.
Gao
,
S.
Gao
,
Y.
Zhang
, and
W.
Zhao
, in
15th Non-Volatile Memory Technology Symposium
,
Beijing, China
,
October 2015
, pp.
1
4
.
19.
C. M.
Liyanagedera
,
A.
Sengupta
,
A.
Jaiswal
, and
K.
Roy
,
Phys. Rev. Appl.
8
,
064017
(
2017
).
20.
M. R.
Pufall
,
W. H.
Rippard
,
S.
Kaka
,
S. E.
Russek
, and
T. J.
Silva
,
Phys. Rev. B
69
,
214409
(
2004
).
21.
X.
Cheng
,
C. T.
Boone
,
J.
Zhu
, and
I. N.
Krivorotov
,
Phys. Rev. Lett.
105
,
047202
(
2010
).
22.
N.
Locatelli
,
A.
Mizrahi
,
A.
Accioly
,
R.
Matsumoto
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
V.
Cros
,
L. G.
Pereira
,
D.
Querlioz
,
J.-V.
Kim
, and
J.
Grollier
,
Phys. Rev. Appl.
2
,
034009
(
2014
).
23.
A.
Mizrahi
,
N.
Locatelli
,
R.
Matsumoto
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
V.
Cros
,
J.-V.
Kim
,
J.
Grollier
, and
D.
Querlioz
,
IEEE Trans. Magn.
51
,
11
(
2015
).
24.
A.
Mizrahi
,
N.
Locatelli
,
J.
Grollier
, and
D.
Querlioz
,
Phys. Rev. B
94
,
054419
(
2016
).
25.
K. Y.
Camsari
,
R.
Faria
,
B. M.
Sutton
, and
S.
Datta
,
Phys. Rev. X
7
,
031014
(
2017
).
26.
R.
Faria
,
K. Y.
Camsari
, and
S.
Datta
,
IEEE Magn. Lett.
8
,
1
(
2017
).
27.
R.
Faria
,
K. Y.
Camsari
, and
S.
Datta
,
AIP Adv.
8
,
045101
(
2018
).
28.
R.
Zand
,
K. Y.
Camsari
,
I.
Ahmed
,
S. D.
Pyle
,
C. H.
Kim
,
S.
Datta
, and
R. F.
DeMara
, preprint arXiv:1710.00249 (
2017
).
29.
P.
Krzysteczko
,
J.
Munchenberger
,
M.
Schafers
,
G.
Reiss
, and
A.
Thomas
,
Adv. Mater.
24
,
762
(
2012
).
30.
D. I.
Suh
,
G. Y.
Bae
,
H. S.
Oh
, and
W.
Park
,
J. Appl. Phys.
117
,
17D714
(
2015
).
You do not currently have access to this content.