Pattern classification architectures leveraging the physics of coupled nano-oscillators have been demonstrated as promising alternative computing approaches but lack effective learning algorithms. In this work, we propose a nano-oscillator based classification architecture where the natural frequencies of the oscillators are learned linear combinations of the inputs and define an offline learning algorithm based on gradient back-propagation. Our results show significant classification improvements over a related approach with online learning. We also compare our architecture with a standard neural network on a simple machine learning case, which suggests that our approach is economical in terms of the number of adjustable parameters. The introduced architecture is also compatible with existing nano-technologies: the architecture does not require changes in the coupling between nano-oscillators, and it is tolerant to oscillator phase noise.

1.
M. P.
Mills
, “The cloud begins with coal-an overview of the electricity used by the global digital ecosystem,” IEEE Trans. Cloud Comput. (2013).
2.
4.
C. D.
Schuman
,
T. E.
Potok
,
R. M.
Patton
,
J. D.
Birdwell
,
M. E.
Dean
,
G. S.
Rose
, and
J. S.
Plank
, CoRR, abs/1705.06963 (
2017
).
5.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
,
Nature
547
,
428
(
2017
).
6.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
48
,
133
(
2001
).
7.
A.
Sharma
,
J.
Bain
, and
J.
Weldon
,
IEEE J. Exploratory Solid-State Comput. Devices Circuits
PP
,
1
(
2015
).
8.
Y. N.
Ovchinnikov
and
V. Z.
Kresin
,
Phys. Rev. B
88
,
214504
(
2013
).
9.
G.
Csaba
and
W.
Porod
,
IEEE Trans. Magn.
49
,
4447
(
2013
).
10.
N.
Locatelli
,
A. F.
Vincent
,
A.
Mizrahi
,
J. S.
Friedman
,
D.
Vodenicarevic
,
J. V.
Kim
,
J. O.
Klein
,
W.
Zhao
,
J.
Grollier
, and
D.
Querlioz
, in
2015 Design, Automation Test in Europe Conference Exhibition (DATE)
(IEEE,
2015
), pp.
994
999
.
12.
E.
Vassilieva
,
G.
Pinto
,
J.
Acacio de Barros
, and
P.
Suppes
,
IEEE Trans. Neural Netw.
22
,
84
(
2011
).
13.
S. P.
Levitan
,
Y.
Fang
,
J. A.
Carpenter
,
C. N.
Gnegy
,
N. S.
Janosik
,
S.
Awosika-Olumo
,
D. M.
Chiarulli
,
G.
Csaba
, and
W.
Porod
, in
Proceedings of the 2013 International Symposium on Low Power Electronics and Design
, ISLPED ’13 (
IEEE Press
,
Piscataway, NJ
,
2013
), pp.
235
, 00001.
14.
D.
Nikonov
,
G.
Csaba
,
W.
Porod
,
T.
Shibata
,
D.
Voils
,
D.
Hammerstrom
,
I.
Young
, and
G.
Bourianoff
,
IEEE J. Exploratory Solid-State Comput. Devices Circuits
1
,
85
(
2015
).
15.
M.
Cotter
,
Y.
Fang
,
S.
Levitan
,
D.
Chiarulli
, and
V.
Narayanan
, in
2014 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)
(IEEE,
2014
), pp.
130
135
.
16.
A.
Parihar
,
N.
Shukla
,
S.
Datta
, and
A.
Raychowdhury
, in
2016 IEEE Photonics Society Summer Topical Meeting Series (SUM)
(IEEE,
2016
), pp.
110
111
.
17.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
,
F. A.
Araujo
,
V.
Cros
,
P.
Bortolotti
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
D.
Vodenicarevic
,
N.
Locatelli
,
D.
Querlioz
, and
J.
Grollier
, “Vowel recognition with four coupled spin-torque nano-oscillators,” Nature, e-print arXiv:1711.02704 [cond-mat, q-bio] (
2017
).
18.
D.
Vodenicarevic
,
N.
Locatelli
,
F. A.
Araujo
,
J.
Grollier
, and
D.
Querlioz
,
Sci. Rep.
7
,
44772
(
2017
).
19.
M.
Ignatov
,
M.
Ziegler
,
M.
Hansen
, and
H.
Kohlstedt
,
Sci. Adv.
3
,
e1700849
(
2017
).
20.
Y.
Fang
,
V. V.
Yashin
,
S. P.
Levitan
, and
A. C.
Balazs
,
Sci. Adv.
2
,
e1601114
(
2016
).
21.
G.
Csaba
and
W.
Porod
, preprint arXiv:1805.09056 (
2018
).
22.
D.
Vodenicarevic
,
N.
Locatelli
,
J.
Grollier
, and
D.
Querlioz
, in
Proceedings of the International Joint Conference on Neural Networks
(
Vancouver
,
2016
), pp.
2015
2022
.
23.
S. B.
Furber
,
D. R.
Lester
,
L. A.
Plana
,
J. D.
Garside
,
E.
Painkras
,
S.
Temple
, and
A. D.
Brown
,
IEEE Trans. Comput.
62
,
2454
(
2013
).
24.
P. A.
Merolla
,
J. V.
Arthur
,
R.
Alvarez-Icaza
,
A. S.
Cassidy
,
J.
Sawada
 et al.,
Science
345
,
668
(
2014
).
25.
Y.-P.
Lin
,
C. H.
Bennett
,
T.
Cabaret
,
D.
Vodenicarevic
,
D.
Chabi
,
D.
Querlioz
,
B.
Jousselme
,
V.
Derycke
, and
J.-O.
Klein
,
Sci. Rep.
6
,
31932
(
2016
).
26.
R.
Pascanu
,
T.
Mikolov
, and
Y.
Bengio
, in
Proceedings of the 30th International Conference on International Conference on Machine Learning
, ICML’13 (JMLR.org,
Atlanta, GA, USA
,
2013
), Vol. 28, pp.
III-1310
III-1318
.
27.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
 et al, “TensorFlow: Large-scale machine learning on heterogeneous systems,” (
2015
), see http//:tensorflow.org.
29.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
30.
N.
Locatelli
,
D.
Vodenicarevic
,
W.
Zhao
,
J. O.
Klein
,
J.
Grollier
, and
D.
Querlioz
, in
2015 IEEE International Symposium on Circuits and Systems (ISCAS)
(IEEE,
2015
), pp.
589
592
.
You do not currently have access to this content.