In the context of neuromorphic computation, spintronic memristors are investigated for their use as synaptic weights. In this paper, we propose and experimentally demonstrate a resistive synaptic device based on ten magnetic tunnel junctions (MTJs) connected in a serial configuration. Our device exhibits multiple resistance levels that support its use as a synaptic element. It allows for two operating knobs: external magnetic field and voltage pulses (Spin-Transfer Torque). Moreover, it can be operated in different ways. When varying continuously the amplitude of the voltage pulse and/or the magnetic field, eleven resistance states can be reached. In contrast, if the initial state of the chain is reset between every step, a very large number of levels are reached. Ideally, a total of 2N resistance levels could be accessible. This coincides well with the desired analog-like behavior in ideal memristors. Since this device consists of a scalable number of N MTJs, and MTJ technology is continuously optimized and improved, the proposed memristor shows promise as a scalable synapse solution for neuromorphic hardware implementations.

1.
Y.
LeCun
,
Y.
Bengio
, and
G.
Hinton
,
Nature
521
,
436
(
2015
).
2.
S.
Park
,
H.
Kim
,
M.
Choo
,
J.
Noh
,
A.
Sheri
,
S.
Jung
,
K.
Seo
,
J.
Park
,
S.
Kim
,
W.
Lee
 et al., “
RRAM-based synapse for neuromorphic system with pattern recognition function
,” in
2012 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2012
), pp.
10.2.1
10.2.4
.
3.
D.
Kuzum
,
R. G.
Jeyasingh
,
B.
Lee
, and
H. S. P.
Wong
,
Nano Lett.
12
,
2179
2186
(
2011
).
4.
D.
Kuzum
,
S.
Yu
, and
H. P.
Wong
,
Nanotechnology
24
,
382001
(
2013
).
5.
A.
Chanthbouala
,
V.
Garcia
,
R. O.
Cherifi
,
K.
Bouzehouane
,
S.
Fusil
,
X.
Moya
,
S.
Xavier
,
H.
Yamada
,
C.
Deranlot
,
N. D.
Mathur
 et al.,
Nat. Mater.
11
,
860
(
2012
).
6.
S.
Parkin
,
K.
Roche
,
M.
Samant
,
P.
Rice
,
R.
Beyers
,
R.
Scheuerlein
,
E.
O’sullivan
,
S.
Brown
,
J.
Bucchigano
,
D.
Abraham
 et al.,
J. Appl. Phys.
85
,
5828
5833
(
1999
).
7.
S.
Van Beek
,
K.
Martens
,
P.
Roussel
,
Y. C.
Wu
,
W.
Kim
,
S.
Rao
,
J.
Swerts
,
D.
Crotti
,
D.
Linten
,
G. S.
Kar
 et al.,
AIP Adv.
8
,
055909
(
2018
).
8.
X.
Wang
,
Y.
Chen
,
H.
Xi
,
H.
Li
, and
D.
Dimitrov
,
IEEE Electron Device Lett.
30
,
294
297
(
2009
). ISSN 0741-3106.
9.
A.
Chanthbouala
,
R.
Matsumoto
,
J.
Grollier
,
V.
Cros
,
A.
Anane
,
A.
Fert
,
A.
Khvalkovskiy
,
K.
Zvezdin
,
K.
Nishimura
,
Y.
Nagamine
 et al.,
Nat. Phys.
7
,
626
(
2011
).
10.
A.
Sengupta
,
Y.
Shim
, and
K.
Roy
,
IEEE Trans. Biomed. Circuits Syst.
10
,
1152
1160
(
2016
). ISSN .
11.
S.
Lequeux
,
J.
Sampaio
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
R.
Matsumoto
,
H.
Kubota
,
S.
Yuasa
, and
J.
Grollier
,
Sci. Rep.
6
,
31510
(
2016
).
12.
M. A.
Bahri
and
R.
Sbiaa
,
Sci. Rep.
6
,
28590
(
2016
). ISSN 2045-2322.
13.
J.
Cai
,
B.
Fang
,
C.
Wang
, and
Z.
Zeng
,
Appl. Phys. Lett.
111
,
182410
(
2017
). ISSN 0003-6951.
14.
D.
Zhang
,
L.
Zeng
,
K.
Cao
,
M.
Wang
,
S.
Peng
,
Y.
Zhang
,
Y.
Zhang
,
J. O.
Klein
,
Y.
Wang
, and
W.
Zhao
,
IEEE Trans. Biomed. Circuits Syst.
10
,
828
836
(
2016
).
15.
E.
Liu
,
J.
Swerts
,
Y. C.
Wu
,
A.
Vaysset
,
S.
Couet
,
S.
Mertens
,
S.
Rao
,
W.
Kim
,
S.
Van Elshocht
,
J.
De Boeck
 et al.,
IEEE Trans. Magn.
2018
,
1
5
.
16.
W.
Kang
,
W.
Zhao
,
Z.
Wang
,
Y.
Zhang
,
J. O.
Klein
,
C.
Chappert
,
Y.
Zhang
, and
D.
Ravelosona
,
IEEE Trans. Magn.
50
,
3400207
(
2014
).
17.
F.
Su
,
W. H.
Chen
,
L.
Xia
,
C. P.
Lo
,
T.
Tang
,
Z.
Wang
,
K. H.
Hsu
,
M.
Cheng
,
J. Y.
Li
,
Y.
Xie
,
Y.
Wang
,
M. F.
Chang
,
H.
Yang
, and
Y.
Liu
, “
A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy harvesting IoE system featuring nonvolatile logics and processing-in-memory
,” in
2017 Symposium on VLSI Technology
(IEEE,
2017
), pp.
T260
T261
.
18.
M.
Cheng
,
L.
Xia
,
Z.
Zhu
,
Y.
Cai
,
Y.
Xie
,
Y.
Wang
, and
H.
Yang
, “
Time: A training-in-memory architecture for memristor-based deep neural networks
,” in
Proceedings of the 54th Annual Design Automation Conference 2017, DAC ’17
(
ACM
,
New York
,
2017
), pp.
26:1
26:6
. ISBN 978-1-4503-4927-7.
19.
P.
Chi
,
S.
Li
,
C.
Xu
,
T.
Zhang
,
J.
Zhao
,
Y.
Liu
,
Y.
Wang
, and
Y.
Xie
, “
Prime: A novel processing-in-memory architecture for neural network computation in reram-based main memory
,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)
(
IEEE
,
2016
), pp.
27
39
. ISSN .
20.
D.
Querlioz
,
O.
Bichler
,
P.
Dollfus
, and
C.
Gamrat
,
IEEE Trans. Nanotechnol.
12
,
288
295
(
2013
). ISSN 1536-125X.
21.
D.
Querlioz
,
O.
Bichler
,
A. F.
Vincent
, and
C.
Gamrat
,
Proc. IEEE
103
,
1398
1416
(
2015
). ISSN 0018-9219.
22.
J.
Schemmel
,
A.
Grubl
,
K.
Meier
, and
E.
Mueller
, “
Implementing synaptic plasticity in a VLSI spiking neural network model
,” in
The 2006 IEEE International Joint Conference on Neural Network Proceedings
(
IEEE
,
2006
), pp.
1
6
. ISSN .
23.
K. D.
Cantley
,
A.
Subramaniam
,
H. J.
Stiegler
,
R. A.
Chapman
, and
E. M.
Vogel
,
IEEE Trans. Nanotechnol.
10
,
1066
1073
(
2011
). ISSN 1536-125X.
You do not currently have access to this content.