A thorough study of the admittance of TiN/Ti/HfO2/W bipolar resistive memories [resistance random access memory (RRAM)] was carried out under different bias conditions and in a wide range of ac signal frequencies. We demonstrate that a continuum of intermediate states can be obtained by applying appropriate dc bias waveforms. Cumulative writing and erasing admittance cycles were performed by applying triangular voltage waveform of increasing amplitude. The influence of the initial conditions on the variation of the real (conductance) and imaginary (susceptance) components of the admittance is described. An accurate control of the memory state is achieved both in terms of the conductance and the susceptance by means of an adequate selection of the voltage values previously applied. A method to obtain three-dimensional voltage-conductance-susceptance state-plots is described in detail. Memory maps of admittance parameters as a function of the programming voltage are made by sensing the memory state at 0 V, without static power consumption. The multilevel nature of RRAM devices and their suitability for neuromorphic computation are demonstrated.

1.
D. S.
Jeong
,
R.
Thomas
,
R. S.
Katiyar
,
J. F.
Scott
,
H.
Kohlstedt
,
A.
Petraru
, and
C. S.
Hwang
,
Rep. Prog. Phys.
75
,
076502
(
2012
).
2.
J. J.
Yang
,
B. J.
Choi
,
M.-X.
Zhang
,
A. C.
Torrezan
,
J. P.
Strachan
, and
R. S.
Williams
,
ECS Trans.
58
(
9
),
9
14
(
2013
).
3.
M.
Prezioso
,
F.
Merrikh-Bayat
,
B. D.
Hoskins
,
G. C.
Adam
,
K. K.
Likharev
, and
D. B.
Strukov
,
Nature
521
,
61
64
(
2015
).
4.
R.
Waser
and
M.
Aono
,
Nat. Mater.
6
(
11
),
833
840
(
2007
).
5.
U.
Russo
,
D.
Ielmini
,
C.
Cagli
, and
A.
Lacaita
,
IEEE Trans. Electron Dev.
56
(
2
),
186
192
(
2009
).
6.
G.-S.
Park
,
X.-S.
Li
,
D.-C.
Kim
,
R.-J.
Jung
,
M.-J.
Lee
, and
S.
Seo
,
Appl. Phys. Lett.
91
,
222103
(
2007
).
7.
R.
Meyer
,
R.
Liedtke
, and
R.
Waser
,
Appl. Phys. Lett.
86
,
112904
(
2005
).
8.
J. P.
Strachan
,
M. D.
Pickett
,
J. J.
Yang
,
S.
Aloni
,
A. L. D.
Kilcoyne
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Adv. Mater.
22
,
3573
3577
(
2010
).
9.
D.
Ielmini
,
Semicond. Sci. Technol.
31
,
063002
(
2016
).
10.
G.
Niu
,
P.
Calka
,
M. A.
der Maur
,
F.
Santoni
,
S.
Guha
,
M.
Fraschke
,
P.
Hamoumou
,
B.
Gautier
,
E.
Perez
,
C.
Walczyk
,
C.
Wenger
,
A. D.
Carlo
,
L.
Alff
, and
T.
Schroeder
,
Sci. Rep.
6
,
25757
(
2016
).
11.
I.
Gupta
,
A.
Serb
,
A.
Khiat
,
R.
Zeitler
,
S.
Vassanelli
, and
T.
Prodomakis
,
Nat. Commun.
7
,
12805
(
2016
).
12.
S.
Ambrogio
,
S.
Balatti
,
V.
Milo
,
R.
Carboni
,
Z.-Q.
Wang
,
A.
Calderoni
,
N.
Ramaswamy
, and
D.
Ielmini
,
IEEE Trans. Electron Dev.
63
(
4
),
1508
1515
(
2016
).
13.
D.
Ielmini
,
IEEE Trans. Electron Dev.
58
(
12
),
4309
4316
(
2011
).
14.
P. J.
Sjöström
,
G. G.
Turrigiano
, and
S. B.
Nelson
,
Neuron
32
,
1149
1164
(
2011
).
15.
S. L.
Barbera
,
D.
Vuillaume
, and
F.
Alibart
,
ACS Nano
9
(
1
),
941
949
(
2015
).
16.
S.
Brivio
,
E.
Covi
,
A.
Serb
,
T.
Prodromakis
,
M.
Fanciulli
, and
S.
Spiga
,
Appl. Phys. Lett.
109
,
133504
(
2016
).
17.
E.
Covi
,
S.
Brivio
,
M.
Fanciulli
, and
S.
Spiga
,
Microelectron. Eng.
147
,
41
44
(
2015
).
18.
Y.
Matveyev
,
K.
Egorov
,
A.
Markeev
, and
A.
Zenkevich
,
J. Appl. Phys.
117
,
044901
(
2015
).
19.
B.
Gao
,
L.
Liu
, and
J.
Kang
,
Prog. Nat. Sci.: Mater. Int.
25
,
47
50
(
2015
).
20.
S.
Poblador
,
M. B.
González
, and
F.
Campabadal
,
Microelectron. Eng.
187–188
,
148
153
(
2018
).
21.
Y.-F.
Chang
,
B.
Fowler
,
Y.-C.
Chen
,
F.
Zhou
,
C.-H.
Pan
,
T.-C.
Chang
, and
J. C.
Lee
,
Sci. Rep.
6
,
21268
(
2016
).
22.
K.-C.
Chang
,
T.-C.
Chang
,
T.-M.
Tsai
,
R.
Zhang
,
Y.-C.
Hung
,
Y.-E.
Syu
,
Y.-F.
Chang
,
M.-C.
Chen
,
T.-J.
Chu
,
H.-L.
Chen
,
C.-H.
Pan
,
C.-C.
Shih
,
J.-C.
Zheng
, and
S. M.
Sze
,
Nanoscale Res. Lett.
10
,
120
(
2015
).
23.
Y.-F.
Chang
,
T.-C.
Chang
, and
C.-Y.
Chang
,
J. Appl. Phys.
110
,
053703
(
2011
).
24.
Y.-F.
Chang
,
B.
Fowler
,
Y.-C.
Chen
,
Y.-T.
Chen
,
Y.
Wang
,
F.
Xue
,
F.
Zhou
, and
J. C.
Lee
,
J. Appl. Phys.
116
,
043709
(
2014
).
25.
S.
Kim
,
Y.-F.
Chang
, and
B.-G.
Park
,
RSC Adv.
7
,
17882
(
2017
).
26.
C.-C.
Hsieh
,
A.
Roy
,
Y.-F.
Chang
,
D.
Shahrjerdi
, and
S. K.
Banerjee
,
Appl. Phys. Lett.
109
,
223501
(
2016
).
27.
C. H.
Cheng
,
P. C.
Chen
,
Y. H.
Wu
, and
A.
Chin
,
IEEE Electron. Dev. Lett.
32
(
12
),
1749
1751
(
2011
).
28.
I.
Salaoru
,
A.
Khiat
,
Q.
Li
,
R.
Berdan
, and
T.
Prodromakis
,
Appl. Phys. Lett.
103
,
233513
(
2013
).
29.
L.
Quingjiang
,
A.
Khiat
,
I.
Salaoru
,
C.
Papavassiliou
,
X.
Hui
, and
T.
Prodromakis
,
Sci. Rep.
4
,
4522
(
2014
).
30.
T.
Wakrim
,
C.
Vallée
,
P.
Gonon
,
C.
Mannequin
, and
A.
Sylvestre
,
Appl. Phys. Lett.
108
,
053502
(
2016
).
31.
Y.-F.
Chang
,
B.
Fowler
,
Y.-C.
Chen
, and
J. C.
Lee
,
Prog. Solid State Chem.
44
,
75
(
2016
).
32.
S.
Dueñas
,
H.
Castán
,
O. G.
Ossorio
,
L. A.
Domínguez
,
H.
García
,
K.
Kalam
,
K.
Kukli
,
M.
Ritala
, and
M.
Leskelä
, in
2017 32nd Conference on Design of Circuits and Integrated Systems (DCIS), Barcelona, Spain, 22–24 November 2017 (IEEE, 2018).
33.
S.
Dueñas
,
H.
Castán
,
H.
García
,
E.
Miranda
,
M. B.
González
, and
F.
Campabadal
,
Microelectron. Eng.
178
,
30
(
2017
).
34.
S.
Dueñas
,
H.
Castán
,
H.
García
,
O. G.
Ossorio
,
L. A.
Domínguez
, and
E.
Miranda
,
IEEE Electron Dev. Lett.
38
(
9
),
1216
1219
(
2017
).
35.
N.
Ershov
,
H. C.
Liu
,
L.
Li
,
M.
Buchanan
,
Z. R.
Wasilewski
, and
A. K.
Josnscher
,
IEEE Trans. Electron Dev.
45
,
2196
2206
(
1998
).
You do not currently have access to this content.