To catch up with growing complexity of artificial neural networks, hybrid integrated systems with high-density nanoscale memristive devices have been proposed as building blocks for the next generation computing hardware. In this Tutorial, we first introduce the methodologies in fabrication of memristor crossbars with a sub-10 nm feature size, including nanoimprint lithography that provides excellent resolution at low cost. Technical issues such as critical dimension control, overlay alignment accuracy, and reliable mold cleaning are discussed in detail. In the meantime, as lateral scaling becomes more challenging, three-dimensional (3D) integration presents an alternative solution to further increase the packing density and to provide new functionalities. Some early demonstrations of 3D hybrid memristor/complementary metal oxide semiconductor circuits are reviewed here, and their design and fabrication related issues are discussed. Successful implementation of large-scale 3D memristive systems with nanometer scale devices may provide ultimate solution to the hardware bottleneck for future computing applications.

1.
G. E.
Moore
, “
Progress in digital integrated electronics
,” in
1975 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
1975
).
2.
S.
Yamauchi
 et al., “
Extendibility of self-aligned type multiple patterning for further scaling
,” in
Advances in Resist Materials and Processing Technology XXX
(SPIE,
2013
), Vol. 8682.
3.
Y. J.
Chen
,
Q.
Cheng
, and
W. L.
Kang
, “
Technological merits, process complexity, and cost analysis of self-aligned multiple patterning
,” in
Optical Microlithography XXV, Parts 1 and 2
(SPIE,
2012
), Vol. 8326.
4.
C.
Wagner
and
N.
Harned
, “
EUV lithography: lithography gets extreme
,”
Nat. Photonics
4
(
1
),
24
26
(
2010
).
5.
A.
Pirati
 et al, “
EUV lithography performance for manufacturing: status and outlook
,” in
Extreme Ultraviolet (Euv) Lithography VII
(SPIE,
2016
), Vol. 9776.
6.
M.
Ieong
 et al, “
Silicon device scaling to the sub-10-nm regime
,”
Science
306
(
5704
),
2057
2060
(
2004
).
7.
W.
Jeong
 et al, “
A 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate
,”
IEEE J. Solid-State Circuits
51
(
1
),
204
212
(
2016
).
8.
T.
Tanaka
 et al., “
7.7 A 768 Gb 3b/cell 3D-floating-gate NAND flash memory
,” in
2016 IEEE International Solid-State Circuits Conference (ISSCC)
(
IEEE
,
2016
).
9.
D.
Kang
 et al., “
7.1 256 Gb 3b/cell V-NAND flash memory with 48 stacked WL layers
,” in
2016 IEEE International Solid-State Circuits Conference (ISSCC)
(
IEEE
,
2016
).
10.
J. H.
Lau
, “
Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration
,” in
2011 International Symposium on Advanced Packaging Materials (APM)
(
IEEE
,
2011
).
11.
S.
Sukegawa
 et al, “
A 1/4-inch 8Mpixel back-illuminated stacked CMOS image sensor
,” in
2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC)
(IEEE,
2013
), Vol. 56, pp.
484
U694
.
12.
J. H.
Lau
 et al,
Advanced MEMS packaging
, 1st ed. (
McGraw-Hill Education
,
2009
).
13.
L.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
14.
D. B.
Strukov
 et al, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
15.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
(
11
),
833
840
(
2007
).
16.
R.
Waser
 et al, “
Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
(
25–26
),
2632
2663
(
2009
).
17.
J. J.
Yang
 et al, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
(
7
),
429
433
(
2008
).
18.
B.
Govoreanu
 et al., “
10×10 nm(2) Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation
,” in
2011 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2011
).
19.
S.
Pi
 et al., “
Memristor crossbars with 4.5 terabits-per-inch-square density and two nanometer dimension
,” preprint arXiv:1804.09848 (
2018
).
20.
H. S. P.
Wong
 et al, “
Metal–oxide RRAM
,”
Proc. IEEE
100
(
6
),
1951
1970
(
2012
).
21.
J. Y.
Seok
 et al, “
A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view
,”
Adv. Funct. Mater.
24
(
34
),
5316
5339
(
2014
).
22.
T.-Y.
Liu
 et al, “
A 130.7-2-layer 32-gb reram memory device in 24-nm technology
,”
IEEE J. Solid-State Circuits
49
(
1
),
140
153
(
2014
).
23.
C. J.
Chevallier
 et al. “
A 0.13 μm 64 Mb multi-layered conductive metal-oxide memory
,” in
2010 IEEE International Solid-State Circuits Conference-(ISSCC)
(IEEE,
2010
).
24.
A.
Kawahara
 et al, “
An 8 Mb multi-layered cross-point ReRAM macro with 443 MB/s write throughput
,”
IEEE J. Solid-State Circuits
48
(
1
),
178
185
(
2013
).
25.
K. H.
Kim
 et al, “
A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications
,”
Nano Lett.
12
(
1
),
389
395
(
2012
).
26.
R.
Zhang
 et al, “
Nanoscale diffusive memristor crossbars as physical unclonable functions
,”
Nanoscale
10
(
6
),
2721
2726
(
2018
).
27.
H.
Jiang
 et al, “
A novel true random number generator based on a stochastic diffusive memristor
,”
Nat. Commun.
8
(
1
),
882
(
2017
).
28.
H.
Nili
 et al, “
Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors
,”
Nat. Electron.
1
(
3
),
197
(
2018
).
29.
A.
Chen
, “
Comprehensive assessment of RRAM-based PUF for hardware security applications
,” in
2015 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2015
).
30.
Z.
Wei
 et al., “
True random number generator using current difference based on a fractional stochastic model in 40-nm embedded ReRAM
,” in
2016 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
).
31.
Z.
Wang
 et al, “
Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,”
Nat. Mater.
16
,
101
108
(
2017
).
32.
S.
Pi
 et al, “
Nanoscale memristive radiofrequency switches
,”
Nat. Commun.
6
,
7519
(
2015
).
33.
J. H.
Yoon
 et al, “
An artificial nociceptor based on a diffusive memristor
,”
Nat. Commun.
9
(
1
),
417
(
2018
).
34.
I.
Valov
 et al, “
Electrochemical metallization memories-fundamentals, applications, prospects
,”
Nanotechnology
22
, 254003 (
2011
).
35.
M. J.
Lee
 et al, “
A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures
,”
Nat. Mater.
10
(
8
),
625
30
(
2011
).
36.
H.
Jiang
 et al, “
Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor
,”
Sci. Rep.
6
,
28525
(
2016
).
37.
J. J.
Yang
 et al, “
High switching endurance in TaOx memristive devices
,”
Appl. Phys. Lett.
97
(
23
),
232102
(
2010
).
38.
S.
Choi
 et al, “
SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations
,”
Nat. Mater.
17
(
4
),
335
340
(
2018
).
39.
M.
Prezioso
 et al, “
Training and operation of an integrated neuromorphic network based on metal-oxide memristors
,”
Nature
521
(
7550
),
61
64
(
2015
).
40.
C.
Li
 et al,
Analogue signal and image processing with large memristor crossbars
.
Nat. Electron.
1
,
52
59
(
2018
).
41.
M.
Hu
 et al, “
Memristor-based analog computation and neural network classification with a dot product engine
,”
Adv. Mater.
30
(
9
), 1705914 (
2018
).
42.
P. M.
Sheridan
 et al, “
Sparse coding with memristor networks
,”
Nat. Nanotechnol.
12
(
8
),
784
789
(
2017
).
43.
P.
Yao
 et al, “
Face classification using electronic synapses
,”
Nat. Commun.
8
,
15199
(
2017
).
44.
C.
Du
 et al, “
Reservoir computing using dynamic memristors for temporal information processing
,”
Nat. Commun.
8
(
1
),
2204
(
2017
).
45.
S.
Choi
 et al, “
Experimental demonstration of feature extraction and dimensionality reduction using memristor networks
,”
Nano Lett.
17
(
5
),
3113
3118
(
2017
).
46.
Z.
Wang
 et al, “
Fully memristive neural networks for pattern classification with unsupervised learning
,”
Nat. Electron.
1
(
2
),
137
(
2018
).
47.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
, “
Memristive devices for computing
,”
Nat. Nanotechnol.
8
(
1
),
13
24
(
2013
).
48.
D.
Ielmini
, “
Resistive switching memories based on metal oxides: mechanisms, reliability and scaling
,”
Semicond. Sci. Technol.
31
(
6
), 063002 (
2016
).
49.
D. S.
Jeong
 et al, “
Emerging memories: resistive switching mechanisms and current status
,”
Rep. Prog. Phys.
75
(
7
),
076502
(
2012
).
50.
K. M.
Kim
,
D. S.
Jeong
, and
C. S.
Hwang
, “
Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook
,”
Nanotechnology
22
(
25
),
254002
(
2011
).
51.
H.
Jiang
and
Q. F.
Xia
, “
Improvement of resistive switching uniformity for TiO2-based memristive devices by introducing a thin HfO2 layer
,”
J. Vacuum Sci. Technol. B
31
(
6
), 06FA04 (
2013
).
52.
H.
Jiang
and
Q. F.
Xia
, “
Single- and bi-layer memristive devices with tunable properties using TiOx switching layers deposited by reactive sputtering
,”
Appl. Phys. Lett.
104
(
15
), 153505 (
2014
).
53.
C.
Li
,
H.
Jiang
, and
Q.
Xia
, “
Low voltage resistive switching devices based on chemically produced silicon oxide
,”
Appl. Phys. Lett.
103
(
6
), 062104 (
2013
).
54.
C.
Li
 et al, “
Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors
,”
Nat. Commun.
8
,
15666
(
2017
).
55.
D. H.
Kwon
 et al, “
Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
,”
Nat. Nanotechnol.
5
(
2
),
148
153
(
2010
).
56.
Y.
Yang
 et al, “
Observation of conducting filament growth in nanoscale resistive memories
,”
Nat. Commun.
3
,
732
(
2012
).
57.
F.
Alibart
 et al, “
High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm
,”
Nanotechnology
23
(
7
),
075201
(
2012
).
58.
S.
Pi
,
P.
Lin
, and
Q. F.
Xia
, “
Cross point arrays of 8 nm × 8 nm memristive devices fabricated with nanoimprint lithography
,”
J. Vacuum Sci. Technol. B
31
(
6
), 06FA02 (
2013
).
59.
K.
Ronse
 et al. “
Opportunities and challenges in device scaling by the introduction of EUV lithography
,” in
2012 IEEE International Electron Devices Meeting (IEDM)
. (
IEEE
,
2012
)
.
60.
B.
Paivanranta
 et al, “
Sub-10 nm patterning using EUV interference lithography
,”
Nanotechnology
22
(
37
),
375302
(
2011
).
61.
J. K. W.
Yang
 et al, “
Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography
,”
J. Vacuum Sci. Technol. B
27
(
6
),
2622
2627
(
2009
).
62.
W. D.
Li
,
W.
Wu
, and
R. S.
Williams
, “
Combined helium ion beam and nanoimprint lithography attains 4 nm half-pitch dense patterns
,”
J. Vacuum Sci. Technol. B
30
(
6
), 06F304 (
2012
).
63.
Q.
Xia
 et al, “
Nanoimprint lithography enables memristor crossbars and hybrid circuits
,”
Appl. Phys. A Mater. Sci. Process.
121
(
2
),
467
479
(
2015
).
64.
S. Y.
Chou
,
P. R.
Krauss
, and
P. J.
Renstrom
, “
Imprint lithography with 25-nanometer resolution
,”
Science
272
(
5258
),
85
87
(
1996
).
65.
F.
Hua
 et al, “
Polymer imprint lithography with molecular-scale resolution
,”
Nano Lett.
4
(
12
),
2467
2471
(
2004
).
66.
G. Y.
Jung
 et al, “
Fabrication of a 34×34 crossbar structure at 50 nm half-pitch by UV-based nanoimprint lithography
,”
Nano Lett.
4
(
7
),
1225
1229
(
2004
).
67.
Z.
Wang
 et al, “
Electrochemical metallization switching with a platinum group metal in different oxides
,”
Nanoscale
8
(
22
),
11766
(
2016
).
68.
C.
Li
 et al, “
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
,”
Nat. Commun.
9
(
1
),
2385
(
2018
).
69.
P.
Marmillion
,
W.
Trybula
, and
B.
Grenon
, “
Advanced PhotoMask cleaning
.” in
24th Annual Bacus Symposium on Photomask Technology, Pt 1 and 2
(SPIE,
2004
), Vol. 5567, pp. 506–510.
70.
F.
Eschbach
 et al, “
Improving photomask surface properties through a combination of dry and wet cleaning steps
,” in
Photomask and Next Generation Lithography Mask Technology XI
(SPIE,
2004
), Vol. 5446, pp. 209–217.
71.
S.
Singh
 et al, “
Effects of cleaning on NIL templates: surface roughness, CD and pattern integrity
,” in
Photomask Technology 2011
(SPIE,
2011
), Vol. 8166.
72.
Z. N.
Yu
 et al, “
Fabrication of 30 nm pitch imprint moulds by frequency doubling for nanowire arrays
,”
Nanotechnology
17
(
19
),
4956
4961
(
2006
).
73.
P.
Lin
and
Q.
Xia
, “
TiO2 sol–gel based memristor crossbar arrays with triangular top and bottom metal electrodes
,” presented in
EIPBN’14
,
Washington, DC
,
27–30 May 2014
.
74.
S.
Pi
,
P.
Lin
, and
Q.
Xia
, “
Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control
,”
Nanotechnology
27
(
46
),
464004
(
2016
).
75.
P.
Lin
,
S.
Pi
, and
Q.
Xia
, “
3D integration of planar crossbar memristive devices with CMOS substrate
,”
Nanotechnology
25
(
40
),
405202
(
2014
).
76.
G. Y.
Jung
 et al, “
Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography
,”
Langmuir
21
(
4
),
1158
1161
(
2005
).
77.
L. C.
Litt
and
M.
Malloy
, “
SEMATECH’s nanoImprint program: A key enabler for nanoimprint introduction
,” in
Alternative Lithographic Technologies
(SPIE,
2009
), Vol. 7271.
78.
S.
Singh
 et al., “
Automated imprint mask cleaning for step-and-flash imprint lithography
,” in
Alternative Lithographic Technologies
(SPIE,
2009
), Vol. 7271.
79.
S.
Singh
 et al, “
Cleaning induced imprint template erosion
,”
J. Micro-Nanolithography MEMS and MOEMS
11
(
3
), 031407 (
2012
).
80.
F.
Meng
 et al, “
Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect
,”
Nanotechnology
22
(
18
),
185301
(
2011
).
81.
L.
Chen
 et al, “
Defect control in nanoimprint lithography
,”
J. Vacuum Sci. Technol. B
23
(
6
),
2933
2938
(
2005
).
82.
P.
Lin
 et al, “
Mold cleaning with polydimethylsiloxane for nanoimprint lithography
,”
Nanotechnology
24
(
32
),
325301
(
2013
).
83.
G. C.
Adam
 et al, “
3-D Memristor crossbars for analog and neuromorphic computing applications
,”
IEEE Trans. Electron Devices
64
(
1
),
312
318
(
2017
).
84.
C.
Wu
 et al, “
Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability
,”
Nat. Commun.
8
(
1
),
752
(
2017
).
85.
B.
Gao
 et al, “
Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems
,”
ACS Nano
8
(
7
),
6998
7004
(
2014
).
86.
S.
Yu
, “
Design of ternary neural network with 3-D vertical RRAM array
,”
IEEE Trans. Electron Devices
64
(
6
),
2721
2727
(
2017
).
87.
S.
Yu
 et al, “
HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture
,”
ACS Nano
7
(
3
),
2320
2325
(
2013
).
88.
H.
Li
 et al., “
Four-layer 3D vertical RRAM integrated with FinFET as a versatile computing unit for brain-inspired cognitive information processing
,” in
2016 IEEE Symposium on VLSI Technology
(
IEEE
,
2016
).
89.
D. B.
Strukov
and
R. S.
Williams
, “
Four-dimensional address topology for circuits with stacked multilayer crossbar arrays
,”
Proc. Natl. Acad. Sci. U.S.A.
106
(
48
),
20155
2015
8
(
2009
).
90.
Q.
Xia
 et al, “
Impact of geometry on the performance of memristive nanodevices
,”
Nanotechnology
22
(
25
),
254026
(
2011
).
91.
P.
Lin
 et al., “
3D hybrid memristor/CMOS circuits with 8 monolithically integrated crossbar layers
,” presented in
EIPBN’16
,
Pittsburg, PA
,
1–4 June 2016
.
You do not currently have access to this content.