Electrical operation of room-temperature (RT) single dopant atom quantum dot (QD) transistors, based on phosphorous atoms isolated within nanoscale SiO2 tunnel barriers, is presented. In contrast to single dopant transistors in silicon, where the QD potential well is shallow and device operation limited to cryogenic temperature, here, a deep (∼2 eV) potential well allows electron confinement at RT. Our transistors use ∼10 nm size scale Si/SiO2/Si point-contact tunnel junctions, defined by scanning probe lithography and geometric oxidation. “Coulomb diamond” charge stability plots are measured at 290 K, with QD addition energy ∼0.3 eV. Theoretical simulation gives a QD size of similar order to the phosphorous atom separation ∼2 nm. Extraction of energy states predicts an anharmonic QD potential, fitted using a Morse oscillator-like potential. The results extend single-atom transistor operation to RT, enable tunneling spectroscopy of impurity atoms in insulators, and allow the energy landscape for P atoms in SiO2 to be determined.

1.
H.
Sellier
,
G. P.
Lansbergen
,
J.
Caro
 et al., “
Transport spectroscopy of a single dopant in a gated silicon nanowire
,”
Phys. Rev. Lett.
97
,
206805
(
2006
).
2.
L. E.
Calvet
,
R. G.
Wheeler
, and
M. A.
Reed
, “
Observation of the linear stark effect in a single acceptor in Si
,”
Phys. Rev. Lett.
98
,
096805
(
2007
).
3.
L. E.
Calvet
,
J. P.
Snyder
, and
W.
Wernsdorfer
, “
Excited-state spectroscopy of single Pt atoms in Si
,”
Phys. Rev. B
78
,
195309
(
2008
).
4.
G. P.
Lansbergen
,
R.
Rahman
,
C. J.
Wellard
 et al., “
Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET
,”
Nat. Phys.
4
,
656
(
2008
).
5.
M.
Pierre
,
R.
Wacquez
,
X.
Jehl
 et al., “
Single-donor ionization energies in a nanoscale CMOS channel
,”
Nat. Nanotechnol.
5
,
133
(
2010
).
6.
K. Y.
Tan
,
K. W.
Chan
,
M.
Möttönen
 et al., “
Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor
,”
Nano Lett.
10
,
11
(
2010
).
7.
V. V.
Shorokhov
,
D. E.
Presnov
,
S. V.
Amitonov
 et al., “
Single-electron tunneling through an individual arsenic dopant in silicon
,”
Nanoscale
9
,
613
(
2017
).
8.
B.
Voisin
,
R.
Maurand
,
S.
Barraud
 et al., “
Electrical control of g-factor in a few-hole silicon nanowire MOSFET
,”
Nano Lett.
16
,
88
(
2016
).
9.
E.
Prati
,
M.
Belli
,
S. G.
Cocco
 et al., “
Adiabatic charge control in a single donor atom transistor
,”
Appl. Phys. Lett.
98
,
053109
(
2011
).
10.
M.
Fuechsle
,
J. A.
Miwa
,
S.
Mahapatra
 et al., “
A single-atom transistor
,”
Nat. Nanotechnol.
7
,
242
(
2012
).
11.
D.
Moraru
,
A.
Udhiarto
,
M.
Anwar
 et al., “
Atom devices based on single dopants in silicon nanostructures
,”
Nano. Res. Lett.
6
,
479
(
2011
).
12.
P. M.
Koenraad
and
M. E.
Flatté
, “
Single dopants in semiconductors
,”
Nat. Mater.
10
,
91
(
2011
).
13.
J. J.
Pla
,
K. Y.
Tan
,
J. P.
Dehollain
 et al., “
A single-atom electron spin qubit in silicon
,”
Nature
489
,
541
(
2012
).
14.
M.
Veldhorst
,
C. H.
Yang
,
J. C. C.
Hwang
 et al., “
A two-qubit logic gate in silicon
,”
Nature
526
,
410
(
2015
).
15.
E.
Prati
,
M.
Hori
,
F.
Guagliardo
 et al., “
Anderson–Mott transition in arrays of a few dopant atoms in a silicon transistor
,”
Nat. Nanotechnol.
7
,
443
(
2012
).
16.
E.
Dupont-Ferrier
,
B.
Roche
,
B.
Voisin
 et al., “
Coherent coupling of two dopants in a silicon nanowire probed by Landau-Zener-Stückelberg interferometry
,”
Phys. Rev. Lett.
110
,
136802
(
2013
).
17.
B.
Roche
,
E.
Dupont-Ferrier
,
B.
Voisin
 et al., “
Detection of a large valley-orbit splitting in silicon with two-donor spectroscopy
,”
Phys. Rev. Lett.
108
,
206812
(
2012
).
18.
B.
Roche
,
R.-P.
Riwar
,
B.
Voisin
 et al., “
A two-atom electron pump
,”
Nat. Commun.
4
,
1581
(
2013
).
19.
M.
Pollak
,
M.
Ortuño
, and
M.
Frydman
,
The Electron Glass
(
Cambridge University Press
,
2013
).
20.
J. C.
Andresen
,
Y.
Pramudya
,
H. G.
Katzgraber
 et al., “
Charge avalanches and depinning in the Coulomb glass: The role of long-range interactions
,”
Phys. Rev. B
93
,
094429
(
2016
).
21.
R. H.
Koch
and
A.
Hartstein
, “
Evidence for resonant tunneling of electrons via sodium ions in silicon dioxide
,”
Phys. Rev. Lett.
54
,
1848
(
1985
).
22.
M. W.
Dellow
,
P. H.
Beton
,
C. J.
Langerak
 et al., “
Resonant tunneling through the bound states of a single donor atom in a quantum well
,”
Phys. Rev. Lett.
68
,
1754
(
1992
).
23.
Tennant
,
D. M.
, “
Limits to conventional lithography
,” in
Nanotechnology
, edited by
G.
Timp
(
Springer
,
1999
), Ch. 4, pp.
161
205
.
24.
M.
Kaestner
,
M.
Hofer
, and
I. W.
Rangelow
, “
Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography
,”
J. Micro/Nanolith. MEMS MOEMS
12
(
3
),
031111
(
2013
).
25.
G.
Binnig
,
H.
Rohrer
,
Ch.
Gerber
, and
E.
Weibel
, “
Surface studies by scanning tunneling microscopy
,”
Phys. Rev. Lett.
49
(
1
),
57
61
(
1982
).
26.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
, “
Atomic force microscope
,”
Phys. Rev. Lett.
56
(
9
),
930
933
(
1986
).
27.
A. A.
Tseng
,
A.
Notargiacomo
, and
T. P.
Chen
, “
Nanofabrication by scanning probe microscope lithography: A review
,”
J. Vac. Sci. Technol. B
23
(
3
),
877
894
(
2005
).
28.
X. N.
Xie
,
H. J.
Chung
,
C. H.
Sow
, and
A. T. S.
Wee
, “
Nanoscale materials patterning and engineering by atomic force microscopy nanolithography
,”
Mater. Sci. Eng. R Rep.
54
(
1–2
),
1
48
(
2006
).
29.
R.
Garcia
,
A. W.
Knoll
, and
E.
Riedo
, “
Advanced scanning probe lithography
,”
Nat. Nanotechnol.
9
,
577
587
(
2014
).
30.
H. M.
Saavedra
,
T. J.
Mullen
,
P.
Zhang
 et al., “
Hybrid strategies in nanolithography
,”
Rep. Prog. Phys.
73
,
036501
(40pp) (
2010
).
31.
Y.
Krivoshapkina
,
M.
Kaestner
, and
I. W.
Rangelow
, “
Tip-based nanolithography methods and materials
,” in
Material and Processes for Next Generation Lithography
, No 11 in Frontiers of Nanoscience, edited by
A.
Robinson
and
R.
Lawson
(
Elsevier
,
2016
), pp.
497
542
.
32.
K.
Ivanova
,
Y.
Sarov
,
T.
Ivanov
 et al., “
Scanning proximal probes for parallel imaging and lithography
,”
J. Vac. Sci. Technol. B
26
(
6
),
2367
2373
(
2008
).
33.
S.
Tachi
,
K.
Tsujimoto
,
S.
Arai
, and
T.
Kure
, “
Low temperature dry etching
,”
J. Vac. Sci. Technol. A
9
,
796
803
(
1991
).
34.
Z.
Durrani
,
M.
Jones
,
C.
Wang
 et al., “
Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors
,”
Nanotechnology
28
,
125208
(
2017
).
35.
I. W.
Rangelow
 et al., “
Nanoprobe maskless lithography
,”
Proc. SPIE
7637
,
76370V–1
(
2010
).
36.
M.
Kaestner
and
I. W.
Rangelow
, “
Scanning proximal probe lithography for sub-10 nm resolution on calix[4]resorcinarene
,”
J. Vac. Sci. Technol. B
29
,
06FD02
(
2011
).
37.
Y.
Krivoshapkina
,
M.
Kaestner
, and
I. W.
Rangelow
, “
Tip-based nanolithography methods and materials
,”
Materials and Processes for Next Generation Lithography
, Frontiers of Nanoscience, edited by A. Robinson and R. Lawson (Elsevier, 2016), Vol.
11
, pp.
497
542
.
38.
S.
Lenk
,
M.
Kaestner
,
C.
Lenk
, and
I. W.
Rangelow
, “
Simulation of field emission from volcano-gated tips for scanning probe lithography
,”
Microelectron. Eng.
177
,
19
24
(
2017
).
39.
S.
Lenk
 et al., “
2D simulation of Fowler-Nordheim electron emission in scanning probe lithography
,”
J. Nanomater. Mol. Nanotechnol.
5
, 1000201 (
2016
).
40.
T.
Michels
and
I. W.
Rangelow
, “
Review of scanning probe micromachining and its applications within nanoscience
,”
Microelectron. Eng.
126
,
191
203
(
2014
).
41.
I. W.
Rangelow
 et al., “
Active scanning probes: A versatile toolkit for fast imaging and emerging nanofabrication
,”
J. Vac. Sci. Technol. B
35
,
06G101
(
2017
).
42.
M.
Kaestner
 et al., “
Advanced electric-field scanning probe lithography on molecular resist using active cantilever
,”
J. Micro/Nanolith., MEMS, MOEMS
14
,
31202
(
2015
).
43.
M.
Kaestner
 et al., “
Scanning probes in nanostructure fabrication
,”
J. Vac. Sci. Technol. B
32
,
06F101
(
2014
).
44.
M.
Kaestner
,
M.
Hofer
, and
I. W.
Rangelow
, “
Nanolithography by scanning probes on calixarene molecular glass resist using mix-and-match lithography
,”
J. Micro/Nanolith., MEMS, MOEMS
12
,
31111
(
2013
).
45.
I.
Rangelow
,
A.
Ahmad
,
T.
Ivanov
 et al., “
Pattern-generation and pattern-transfer for single-digit nano devices
,”
J. Vac. Sci. Technol. B
34
,
06K202
(
2016
).
46.
C.
Lenk
,
M.
Hofmann
,
S.
Lenk
 et al., “
Nanofabrication by field-emission scanning probe lithography and cryogenic plasma etching
,”
Microelectron. Eng.
192
,
77
82
(
2018
).
47.
K.
Likharev
, “
Single-electron devices and their applications
,”
Proc. IEEE
87
(
4
),
606
632
(
1999
).
48.
Z.
Durrani
,
Single-Electron Devices and Circuits in Silicon
(
Imperial College Press
,
London
,
2009
).
49.
L. E. P.
Kouwenhoven
,
C. M.
Marcus
,
P. L.
McEuen
 et al., “
Electron transport in quantum dots,”
in
Mesoscopic Electron Transport
(
Kluwer
,
1997
).
50.
M.
Schnabel
,
C.
Weiss
,
P.
Löper
 et al., “
Self-assembled silicon nanocrystal arrays for photovoltaics
,”
Phys. Status Solidi A
212
,
1649
1661
(
2015
).
51.
D.
Han
,
D.
West
,
W.-B.
Li
 et al., “
Impurity doping in SiO2: Formation energies and defect levels from first-principles calculations
,”
Phys. Rev. B
82
,
155132
(
2010
).
52.
D.
Konig
,
D.
Hiller
,
S.
Gutsch
 et al., “
Modulation doping of silicon using aluminum-induced acceptor states in silicon dioxide
,”
Sci. Rep.
7
,
46703
(
2017
).
53.
W. C.
Martin
,
R.
Zalubas
, and
A.
Musgrove
, “
Energy levels of phosphorus, P i through P xv
,”
J. Phys. Chem. Ref. Data
14
,
751
(
1985
).
54.
M.
Kirihara
,
K.
Nakazato
, and
M.
Wagner
, “
Hybrid circuit simulator including a model for single electron tunnelling devices
,”
Jpn J. Appl. Phys. Part 1
38
(
4A
),
2028
2032
(
1999
).
55.
A.
Andreev
(unpublished).
56.
P. L.
McEuan
,
N. S.
Wingreen
,
E. B.
Foxman
 et al., “
Coulomb interactions and energy-level spectrum of a small electron gas
,”
Phys. B
189
,
70
79
(
1993
).
57.
H.
Hakan
and
H. C.
Wolf
,
Molecular Physics and Elements of Quantum Chemistry
(
Springer-Verlag, Berlin
,
2004
).
58.
K.
Uchida
,
J.
Koga
,
R.
Ohba
, and
A.
Toriumi
, “
Programmable single-electron transistor logic for future low-power intelligent LSI : Proposal and room-temperature operation
,”
IEEE Trans. Electron Devices
50
(
7
),
1623
1630
(
2003
).
You do not currently have access to this content.