We report on the electrical properties of polycrystalline NbO2 thin film vertical devices grown on TiN coated SiO2/Si substrates using pulsed laser deposition. First, we analyzed the thickness and contact size dependences of threshold switching of NbO2 films grown in 10 mTorr Ar/O2 mixed growth pressure, where 25.1%/74.9% of NbO2/Nb2O5 surface composition content was estimated by ex-situ x-ray photoelectron spectroscopy. Then the threshold switching and self-sustained current oscillatory behavior of films with different NbO2/Nb2O5 composition ratios was measured and analyzed. The current-voltage measurement revealed that the leakage current property in the insulating state was dominated by the trap-charge assisted Poole-Frankel conduction mechanism. All films showed threshold switching behavior in agreement with the previously proposed Joule heating mechanism. The second film was grown in lower (1 mTorr) growth pressure, which resulted in a higher (34.2%/65.8%) NbO2/Nb2O5 film surface composition. The film grown in higher growth pressure demonstrated lower off-state leakage current, faster switching, and self-sustained oscillations with higher frequency than the film grown in lower growth pressure.

1.
F. J.
Morin
,
Phys. Rev. Lett.
3
,
34
(
1959
).
2.
M.
Son
,
J.
Lee
,
J.
Park
,
J.
Shin
,
G.
Choi
,
S.
Jung
,
W.
Lee
,
S.
Kim
,
S.
Park
, and
H.
Hwang
,
IEEE Electron Device Lett.
32
,
1579
(
2011
).
3.
A.
Beaumont
,
J.
Leroy
,
J.-C.
Orlianges
, and
A.
Crunteanu
,
J. Appl. Phys.
115
,
154502
(
2014
).
4.
M. D.
Pickett
,
G.
Medeiros-Ribeiro
, and
R. S.
Williams
,
Nat. Mater.
12
,
114
(
2013
).
5.
S.
Li
,
X.
Liu
,
S. K.
Nandi
,
D. K.
Venkatachalam
, and
R. G.
Elliman
,
Nanotechnology
28
,
125201
(
2017
).
6.
S.
Kim
,
J.
Park
,
J.
Woo
,
C.
Cho
,
W.
Lee
,
J.
Shin
,
G.
Choi
,
S.
Park
,
D.
Lee
,
B. H.
Lee
, and
H.
Hwang
,
Microelectron. Eng.
107
,
33
(
2013
).
7.
X.
Liu
,
S. K.
Nandi
,
D. K.
Venkatachalam
,
K.
Belay
,
S.
Song
, and
R. G.
Elliman
,
IEEE Electron Device Lett.
35
,
1055
(
2014
).
8.
H. R.
Phillipp
and
L. M.
Levinson
,
J. Appl. Phys.
50
,
4814
(
1979
).
9.
J. C.
Lee
and
W. W.
Durand
,
J. Appl. Phys.
56
,
3350
(
1984
).
10.
S. H.
Shin
,
T.
Halpern
, and
P. M.
Raccah
,
J. Appl. Phys.
48
,
3150
(
1977
).
11.
X.
Liu
,
S. M.
Sadaf
,
M.
Son
,
J.
Shin
,
J.
Park
,
J.
Lee
,
S.
Park
, and
H.
Hwang
,
Nanotechnology
22
,
475702
(
2011
).
12.
E.
Cha
,
J.
Park
,
J.
Woo
,
D.
Lee
,
A.
Prakash
, and
H.
Hwang
,
Appl. Phys. Lett.
108
,
153502
(
2016
).
13.
S.
Li
,
X.
Liu
,
S. K.
Nandi
,
D. K.
Venkatachalam
, and
R. G.
Elliman
,
Appl. Phys. Lett.
106
,
212902
(
2015
).
14.
E.
Cha
,
J.
Woo
,
D.
Lee
,
S.
Lee
,
J.
Song
,
Y.
Koo
,
J.
Lee
,
C. G.
Park
,
M. Y.
Yang
,
K.
Kamiya
,
K.
Shiraishi
,
B.
Magyari-Kope
,
Y.
Nishi
, and
H.
Hwang
, in
2013 IEEE International Electron Devices Meeting
(
IEEE
,
2013
), p.
10.5.1
.
15.
A. A.
Bolzan
,
C.
Fong
,
B. J.
Kennedy
, and
C. J.
Howard
,
J. Solid State Chem.
113
,
9
(
1994
).
16.
K.
Sakata
,
I.
Nishida
,
M.
Matsushima
, and
T.
Sakata
,
J. Phys. Soc. Jpn.
27
,
506
(
1969
).
17.
J.
Park
,
T.
Hadamek
,
A. B.
Posadas
,
E.
Cha
,
A. A.
Demkov
, and
H.
Hwang
,
Sci. Rep.
7
,
4068
(
2017
).
18.
J. H.
Lee
,
E. J.
Cha
,
Y. T.
Kim
,
B. K.
Chae
,
J. J.
Kim
,
S. Y.
Lee
,
H. S.
Hwang
, and
C. G.
Park
,
Micron
79
,
101
(
2015
).
19.
T.
Joshi
,
T. R.
Senty
,
P.
Borisov
,
A. D.
Bristow
, and
D.
Lederman
,
J. Phys. D: Appl. Phys.
48
,
335308
(
2015
).
20.
T.
Joshi
,
P.
Borisov
, and
D.
Lederman
,
AIP Adv.
6
,
125006
(
2016
).
21.
D.
Grier
and
G.
McCarthy
,
ICDD Grant-in-Aid
(
North Dakota State University
,
Fargo, North Dakota, USA
,
1991
).
22.
M.
Björck
and
G.
Andersson
,
J. Appl. Crystallogr.
40
,
1174
(
2007
).
23.
C.
Lin
,
A.
Posadas
,
T.
Hadamek
, and
A. A.
Demkov
,
Phys. Rev. B
92
,
035110
(
2015
).
24.
F. J.
Wong
,
N.
Hong
, and
S.
Ramanathan
,
Phys. Rev. B
90
,
115135
(
2014
).
25.
I. H.
Inoue
,
S.
Yasuda
,
H.
Akinaga
, and
H.
Takagi
,
Phys. Rev. B
77
,
035105
(
2008
).
26.
R.
Meyer
,
L.
Schloss
,
J.
Brewer
,
R.
Lambertson
,
W.
Kinney
,
J.
Sanchez
, and
D.
Rinerso
n, in
Proceedings of the 9th Annual Non-Volatile Memory Technical Symposium
(
2008
), p.
54
.
27.
Y.
Wang
,
R. B.
Comes
,
S. A.
Wolf
, and
J.
Lu
,
J. Electron Device Soc.
4
,
11
(
2016
).
28.
W. A.
Hubbard
,
T.
Joshi
,
P.
Borisov
,
D.
Lederman
, and
B. C.
Regan
,
Microsc. Microanal.
22
(
S3
),
1254
(
2016
).
29.
J.
Frenkel
,
Phys. Rev.
54
,
647
(
1938
).
30.
A.
Ongaro
and
A.
Pillonnet
,
IEE Proc. A
138
,
127
(
1991
).
31.
S.
Slesazeck
,
H.
Mahne
,
H.
Wylezich
,
A.
Wachowiak
,
J.
Radhakrishnan
,
A.
Ascoli
,
R.
Tetzlaff
, and
T.
Mikolajicka
,
RSC Adv.
5
,
102318
(
2015
).
32.
G. A.
Gibson
,
S.
Musunuru
,
J.
Zhang
,
K.
Vandenberghe
,
J.
Lee
,
C.-C.
Hsieh
,
W.
Jackson
,
Y.
Jeon
,
D.
Henze
,
Z.
Li
, and
R. S.
Williams
,
Appl. Phys. Lett.
108
,
023505
(
2016
).
33.
C.
Funck
,
S.
Menzel
,
N.
Aslam
,
H.
Zhang
,
A.
Hardtdegen
,
R.
Waser
, and
S.
Hoffmann-Eifert
,
Adv. Electron. Mater.
2
,
1600169
(
2016
).
34.
K. M.
Kim
,
J.
Zhang
,
C.
Graves
,
J. J.
Yang
,
B. J.
Choi
,
C. S.
Hwang
,
Z.
Li
, and
R. S.
Williams
,
Nano Lett.
16
,
6724
(
2016
).
35.
S.-E.
Ahn
,
M.-J.
Lee
,
Y.
Park
,
B. S.
Kang
,
C. B.
Lee
,
K. H.
Kim
,
S.
Seo
,
D.-S.
Suh
,
D.-C.
Kim
,
J.
Hur
,
W.
Xianyu
,
G.
Stefanovich
,
H. A.
Yin
,
I.-K.
Yoo
,
A.-H.
Lee
,
J.-B.
Park
,
I.-G.
Baek
, and
B. H.
Park
,
Adv. Mater.
20
,
924
(
2008
).
36.
P. R.
Shrestha
,
D. M.
Nminibapiel
,
J. P.
Campbell
,
J. T.
Ryan
,
D.
Veksler
,
H.
Baumgart
, and
K. P.
Cheung
,
IEEE Trans. Electron Devices
65
,
108
(
2018
).
37.
K. L.
Chopra
,
Proc. IEEE
51
,
941
(
1963
).
38.
D. V.
Geppert
,
Proc. IEEE
51
,
223
(
1963
).
39.
S. O.
Pearson
and
H. St. G.
Anson
,
Proc. Phys. Soc. London
34
,
204
(
1921
).
40.
A. A.
Velichko
,
A. L.
Pergament
,
G. B.
Stefanovich
, and
P. P.
Boriskov
,
J. Sel. Top. Nano Electron. Comput.
2
,
20
(
2014
).
41.
B.
Lalevic
and
M.
Shoga
,
Thin Solid Films
75
,
199
(
1981
).
You do not currently have access to this content.