The anhysteretic behavior of a soft Pb(Zr,Ti)O3 was measured from 25 °C to 175 °C. The experimental determination of the anhysteretic polarization curve, combined with classical P-E and S-E loop measurements, allows for an experimental separation of the reversible and dissipative contributions to the ferroelectric behavior. This approach offers insight into the different mechanisms originating at the microscopic scale and the contribution to the macroscopic ferroelectric properties. It was found that the reversible anhysteretic susceptibility χa of the unpoled material increases by 30% from room temperature to 150 °C. On the other hand, the effect on the total susceptibility for a null polarization χc increases only by 17% over the same temperature range. Since the difference between χa and χc reflects the dissipative contribution to the macroscopic ferroelectric behavior, this reveals that dissipation reduces the improvement of susceptibility under increasing temperature. This work illustrates the benefits of separating experimentally the reversible and dissipative contributions to describe the ferroelectric behavior, which can serve as a basis for advanced modeling approaches.

1.
A.
Ayes
,
A.
Maskay
, and
M.
Pereira da Cunha
, “
Predicted and measured temperature compensated surface acoustic wave devices for high-temperature applications
,”
Electron. Lett.
53
(
11
),
699
700
(
2017
).
2.
R. R.
Grzybowski
, “
High temperature passive components for commercial and military applications
,” in
Proceedings of the 32nd Intersociety
, Energy Conversion Engineering Conference (IEEE,
1997
), Vol. 1, pp.
699
704
.
3.
C.
Randall
,
A.
Kelnberger
,
G.
Yang
,
R. E.
Eitel
, and
T.
Shrout
, “
High strain piezoelectric multilayer actuators-a material science and engineering challenge
,”
J. Electroceram.
14
(
3
),
177
191
(
2005
).
4.
M.
Hooker
, “
Properties of PZT-based piezoelectric ceramics between -150 and 250 °C,” NASA/CR Report No. 208708
,
1998
.
5.
B.
Kaeswurm
,
F. H.
Schader
, and
K. G.
Webber
, “
Ferroelectric, ferroelastic, piezoelectric, and dielectric properties of lead zirconate titanate from −150 °C to 350 °C
,”
Ceram. Int.
44
,
2358
2363
(
2018
).
6.
Y.
Li
,
X.
Zhou
, and
F.
Li
, “
Temperature-dependent mechanical depolarization of ferroelectric ceramics
,”
J. Phys. D: Appl. Phys.
43
,
175501
(
2010
).
7.
M.
Nicolai
,
S.
Uhlig
,
A.
Schönecker
, and
A.
Michaelis
, “
Experimental investigation of non-linear behaviour of PZT piezoceramics at low temperatures
,”
Adv. Sci. Technol.
56
,
105
110
(
2008
).
8.
P. W.
Forsbergh
, Jr.
, “
Piezoelectricity, Electrostriction and Ferroelectricity
,” in
Encyclopedia of Physics/Handbuch der Physik Book Series (HDBPHYS) Dielectrics
(
1956
), Vol. 4/17, pp.
264
392
.
9.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
, “
Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading
,”
J. Am. Ceram. Soc.
94
(
2
),
293
309
(
2011
).
10.
B.
Lewis
, “
Energy loss processes in ferroelectric ceramics
,”
Proc. Phys. Soc. (London)
73
,
17
(
1959
).
11.
J.
Jones
,
E.
Aksel
,
G.
Tutuncu
,
T.-M.
Usher
,
J.
Chen
,
X.
Xing
, and
A.
Studer
, “
Domain wall and interphase boundary motion in a two-phase morphotropic phase boundary ferroelectric: Frequency dispersion and contribution to piezoelectric and dielectric properties
,”
Phys. Rev. B
86
(
3
),
024104
(
2012
).
12.
H.
Fu
and
R.
Cohen
, “
Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics
,”
Nature
403
,
281
283
(
2000
).
13.
D.
Damjanovic
, “
Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics
,”
J. Appl. Phys.
82
,
1788
(
1997
).
14.
R.
Eitel
,
T.
Shrout
, and
C.
Randall
, “
Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics
,”
J. Appl. Phys.
99
,
124110
(
2006
).
15.
D.
Damjanovic
, “
Hysteresis in piezoelectric and ferroelectric materials
,” in
The Science of Hysteresis
(
Elsevier
,
2006
), Vol.
3
, pp.
337
452
.
16.
R. E.
Eitel
, “
Rayleigh law response in ferroelectric ceramics quantifying domain wall dynamics and structural relationships
,” in
Sixteenth IEEE International Symposium on Applications of Ferroelectrics, ISAF 2007,
2007
.
17.
B.
Kaeswurm
,
V.
Segouin
,
L.
Daniel
, and
K. G.
Webber
, “
The anhysteretic polarisation of ferroelectrics
,”
J. Phys. D: Appl. Phys.
51
,
075305
(
2018
).
18.
R.
Bozorth
,
Ferromagnetism
(
Van Nostrand
,
1951
).
19.
L.
Daniel
,
D.
Hall
, and
P. J.
Withers
, “
A multiscale model for reversible ferroelectric behaviour of polycrystalline ceramics
,”
Mech. Mater.
71
,
85
100
(
2014
).
20.
D.
Hall
, “
Nonlinearity in piezoelectric ceramics
,”
J. Mater. Sci.
36
,
4575
4601
(
2001
).
21.
R.
Herbiet
,
U.
Robels
,
H.
Dederichs
, and
G.
Arlt
, “
Domain wall and volume contributions to material properties of PZT ceramics
,”
Ferroelectrics
98
,
107
121
(
1989
).
22.
Q. M.
Zhang
,
H.
Wang
,
N.
Kim
, and
L. E.
Cross
, “
Direct evaluation of domain wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate titanate ceramics
,”
J. Appl. Phys.
75
,
454
(
1994
).
23.
F. H.
Schader
,
G.
Rossetti
, Jr.
,
J.
Luo
, and
K. G.
Webber
, “
Piezoelectric and ferroelectric properties of ⟨001⟩C Pb(In1/2Nb1/2) O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals under combined thermal and mechanical loading
,”
Acta Mater.
126
,
174
181
(
2017
).
24.
D.
Damjanovic
,
M.
Budimir
,
M.
Davis
, and
N.
Setter
, “
Monodomain versus poly-domain piezoelectric response of 0.67Pb(Mg_1/3Nb2/3)O_3-0.33PbTiO3 single crystals along nonpolar directions
,”
Appl. Phys. Lett.
83
,
527
(
2003
).
25.
M.
Stewart
,
M. G.
Cain
, and
D.
Hall
,
Ferroelectric Hysteresis Measurement and Analysis
(
National Physical Laboratory and University of Manchester
,
1999
), ISBN: 1368-6550.
26.
D.
Bochenek
,
R.
Skulski
,
P.
Wawrzala
, and
D.
Brzezinska
, “
Dielectric and ferroelectric properties and electric conductivity of sol gel derived PBZT ceramics
,”
J. Alloys Compd.
509
,
5356
5363
(
2011
).
27.
A. B.
Kounga
,
T.
Granzow
,
E.
Aulbach
,
M.
Hinterstein
, and
J.
Rödel
, “
High-temperature poling of ferroelectrics
,”
J. Appl. Phys.
104
,
024116
(
2008
).
28.
H.
Kungl
and
M. J.
Hoffmann
, “
Temperature dependence of poling strain and strain under high electric fields in LaSr-doped morphotropic PZT and its relation to changes in structural characteristics
,”
Acta Mater.
55
,
5780
5791
(
2007
).
29.
P. M.
Weaver
,
M. G.
Cain
, and
M.
Stewart
, “
Temperature dependence of high field electromechanical coupling in ferroelectric ceramics
,”
J. Phys. D: Appl. Phys.
43
,
165404
(
2010
).
30.
A. Q.
Jiang
and
T. A.
Tang
, “
Remanent polarization reduction with enhanced temperature in ferroelectric thin films
,”
J. Appl. Phys.
104
,
024104
(
2008
).
31.
G. A.
Salvatore
,
L.
Lattanzio
,
D.
Bouvet
,
I.
Stolichnov
,
N.
Setter
, and
A. M.
Ionescu
, “
Ferroelectric transistors with improved characteristics at high temperature
,”
Appl. Phys. Lett.
97
,
053503
(
2010
).
32.
J.
Robertson
, “
High dielectric constant gate oxides for metal oxide Si transistors
,”
Rep. Prog. Phys.
69
,
327
396
(
2006
).
You do not currently have access to this content.