Advances in material design and device miniaturization lead to physical properties that may significantly differ from the bulk ones. In particular, thermal transport is strongly affected when the device dimensions approach the mean free path of heat carriers. Scanning Thermal Microscopy (SThM) is arguably the best approach for probing nanoscale thermal properties with few tens of nm lateral resolution. Typical SThM probes based on microfabricated Pd resistive probes (PdRP) using a spatially distributed heater and a nanoscale tip in contact with the sample provide high sensitivity and operation in ambient, vacuum, and liquid environments. Although some aspects of the response of this sensor have been studied, both for static and dynamic measurements, here we build an analytical model of the PdRP sensor taking into account finite dimensions of the heater that improves the precision and stability of the quantitative measurements. In particular, we analyse the probe response for heat flowing through a tip to the sample and due to probe self-heating and theoretically and experimentally demonstrate that they can differ by more than 50%, hence introducing significant correction in the SThM measurements. Furthermore, we analyzed the effect of environmental parameters such as sample and microscope stage temperatures and laser illumination, which allowed reducing the experimental scatter by a factor of 10. Finally, varying these parameters, we measured absolute values of heat resistances and compared these to the model for both ambient and vacuum SThM operations, providing a comprehensive pathway improving the precision of the nanothermal measurements in SThM.

1.
S.
Gomès
,
A.
Assy
, and
P.-O.
Chapuis
,
Phys. Status Solidi A
212
,
477
(
2015
).
2.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
3.
M. M.
Kim
,
A.
Giry
,
M.
Mastiani
,
G. O.
Rodrigues
,
A.
Reis
, and
P.
Mandin
,
Microelectron. Eng.
148
,
129
(
2015
).
4.
A.
Majumdar
,
Annu. Rev. Mater. Sci.
29
,
505
(
1999
).
5.
L.
Shi
and
A.
Majumdar
,
J. Heat Transfer-Trans. ASME
124
,
329
(
2002
).
6.
P. S.
Dobson
,
J. M. R.
Weaver
,
G.
Mills
, and
IEEE
, in
2007 IEEE Sensors
(
IEEE
,
New York
,
2007
), Vols. 1–3, p.
708
.
7.
G.
Mills
,
H.
Zhou
,
A.
Midha
,
L.
Donaldson
, and
J. M. R.
Weaver
,
Appl. Phys. Lett.
72
,
2900
(
1998
).
8.
M. E.
Pumarol
,
M. C.
Rosamond
,
P.
Tovee
,
M. C.
Petty
,
D. A.
Zeze
,
V.
Falko
, and
O. V.
Kolosov
,
Nano Lett.
12
,
2906
(
2012
).
9.
M.
Hinz
,
O.
Marti
,
B.
Gotsmann
,
M. A.
Lantz
, and
U.
Durig
,
Appl. Phys. Lett.
92
,
043122
(
2008
).
10.
Y.
Zhang
,
P. S.
Dobson
, and
J. M. R.
Weaver
,
J. Vac. Sci. Technol., B
30
,
010601
(
2012
).
11.
P. D.
Tovee
and
O. V.
Kolosov
,
Nanotechnology
24
,
465706
(
2013
).
12.
N. D.
Masters
,
W.
Ye
, and
W. P.
King
,
Phys. Fluids
17
,
100615
(
2005
).
13.
L.
Mu
,
Y.
Li
,
N.
Mehra
,
T.
Ji
, and
J.
Zhu
,
ACS Appl. Mater. Interfaces
9
,
12138
(
2017
).
14.
D.
Xu
,
Y.
Zhang
,
H.
Zhou
,
Y.
Meng
, and
S.
Wang
,
Holzforschung
70
,
323
330
(
2016
).
15.
A.
Dawson
,
M.
Rides
,
A. S.
Maxwell
,
A.
Cuenat
, and
A. R.
Samano
,
Polym. Testing
41
,
198
(
2015
).
16.
S.
Crossley
,
T.
Usui
,
B.
Nair
,
S.
Kar-Narayan
,
X.
Moya
,
S.
Hirose
,
A.
Ando
, and
N. D.
Mathur
,
Appl. Phys. Lett.
108
,
032902
(
2016
).
17.
G.
Wielgoszewski
,
P.
Paletko
,
D.
Tomaszewski
,
M.
Zaborowski
,
G.
Jozwiak
,
D.
Kopiec
,
T.
Gotszalk
, and
P.
Grabiec
,
Micron
79
,
93
(
2015
).
18.
K. W.
Park
,
E. M.
Krivoy
,
H. P.
Nair
,
S. R.
Bank
, and
E. T.
Yu
,
Nanotechnology
26
,
265701
(
2015
).
19.
P.
Tovee
,
M.
Pumarol
,
D.
Zeze
,
K.
Kjoller
, and
O.
Kolosov
,
J. Appl. Phys.
112
,
114317
(
2012
).
20.
E.
Puyoo
,
S.
Grauby
,
J. M.
Rampnoux
,
E.
Rouviere
, and
S.
Dilhaire
,
J. Appl. Phys.
109
,
024302
(
2011
).
21.
J.
Bodzenta
,
M.
Chirtoc
, and
J.
Juszczyk
,
J. Appl. Phys.
116
,
054501
(
2014
).
22.
L.
Ramiandrisoa
,
A.
Allard
,
Y.
Joumani
,
B.
Hay
, and
S.
Gomés
,
Rev. Sci. Instrum.
88
,
125115
(
2017
).
23.
24.
N.
Maxim
,
C. R.
Mark
,
J. G.
Andrew
,
V. K.
Oleg
,
G. D.
Vladimir
, and
A. Z.
Dagou
,
J. Phys. D: Appl. Phys.
50
,
494004
(
2017
).
25.
A.
Assy
and
S.
Gomès
,
Appl. Phys. Lett.
107
,
043105
(
2015
).
26.
A.
Kaźmierczak-Bałata
,
J.
Juszczyk
,
D.
Trefon-Radziejewska
, and
J.
Bodzenta
,
J. Appl. Phys.
121
,
114502
(
2017
).
27.
J. L.
Battaglia
,
A.
Saci
,
I.
De
,
R.
Cecchini
,
S.
Selmo
,
M.
Fanciulli
,
S.
Cecchi
, and
M.
Longo
,
Phys. Status Solidi A
214
,
1600500
(
2017
).
28.
Y.
Ge
,
Y.
Zhang
,
J. A.
Booth
,
J. M.
Weaver
, and
P. S.
Dobson
,
Nanotechnology
27
,
325503
(
2016
).
29.
B. A.
Nelson
and
W. P.
King
,
Rev. Sci. Instrum.
78
,
023702
(
2007
).

Supplementary Material

You do not currently have access to this content.