Dissipative elastic metamaterials have attracted increased attention in recent times. This paper presents the development of a dissipative elastic metamaterial with multiple Maxwell-type resonators for stress wave attenuation. The mechanism of the dissipation effect on the vibration characteristics is systematically investigated by mass-spring-damper models with single and dual resonators. Based on the parameter optimization, it is revealed that a broadband wave attenuation region (stopping band) can be obtained by properly utilizing interactions from resonant motions and viscoelastic effects of the Maxwell-type oscillators. The relevant numerical verifications are conducted for various cases, and excellent agreement between the numerical and theoretical frequency response functions is shown. The design of this dissipative metamaterial system is further applied for dynamic load mitigation and blast wave attenuation. Moreover, the transient response in the continuum model is designed and analyzed for more robust design. By virtue of the bandgap merging effect induced by the Maxwell-type damper, the transient blast wave can be almost completely suppressed in the low frequency range. A significantly improved performance of the proposed dissipative metamaterials for stress wave mitigation is verified in both time and frequency domains.

1.
W.
Cai
,
V.
Shalaev
, and
D. K.
Paul
,
Phys. Today
63
(9),
57
(
2010
).
2.
J. B.
Pendry
,
Phys. Rev. Lett.
85
,
3966
(
2000
).
3.
J.
Li
and
C.
Chan
,
Phys. Rev. E
70
,
055602
(
2004
).
4.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
,
Nat. Mater.
5
,
452
(
2006
).
5.
T.
Tanaka
,
A.
Ishikawa
, and
S.
Kawata
,
Phys. Rev. B
73
,
125423
(
2006
).
6.
B.
Li
and
K.
Tan
,
J. Appl. Phys.
120
,
075103
(
2016
).
7.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
101
,
204301
(
2008
).
8.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
9.
K. T.
Tan
,
H.
Huang
, and
C.
Sun
,
Int. J. Impact Eng.
64
,
20
(
2014
).
10.
S.
Zhang
,
L.
Yin
, and
N.
Fang
,
Phys. Rev. Lett.
102
,
194301
(
2009
).
11.
S.
Gonella
,
A. C.
To
, and
W. K.
Liu
,
J. Mech. Phys. Solids
57
,
621
(
2009
).
12.
B.
Li
,
S.
Alamri
, and
K.
Tan
,
Sci. Rep.
7
,
6226
(
2017
).
13.
C. J.
Naify
,
C.-M.
Chang
,
G.
McKnight
, and
S.
Nutt
,
J. Appl. Phys.
110
,
124903
(
2011
).
14.
B.
Li
,
Y.
Liu
, and
K.-T.
Tan
, “
A novel meta-lattice sandwich structure for dynamic load mitigation
,”
J. Sandwich Struct. Mater.
(published online
2017
).
15.
N.
Fang
,
H.
Lee
,
C.
Sun
, and
X.
Zhang
,
Science
308
,
534
(
2005
).
16.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
17.
S.
Yao
,
X.
Zhou
, and
G.
Hu
,
New J. Phys.
10
,
043020
(
2008
).
18.
H.
Huang
,
C.
Sun
, and
G.
Huang
,
Int. J. Eng. Sci.
47
,
610
(
2009
).
19.
K. T.
Tan
,
H.
Huang
, and
C.
Sun
,
Appl. Phys. Lett.
101
,
241902
(
2012
).
20.
Y.
Lai
,
Y.
Wu
,
P.
Sheng
, and
Z.-Q.
Zhang
,
Nat. Mater.
10
,
620
(
2011
).
21.
R. S.
Lakes
,
T.
Lee
,
A.
Bersie
, and
Y.
Wang
,
Nature
410
,
565
(
2001
).
22.
X.-N.
Liu
,
G.-K.
Hu
,
G.-L.
Huang
, and
C.-T.
Sun
,
Appl. Phys. Lett.
98
,
251907
(
2011
).
23.
G.
Huang
and
C.
Sun
,
J. Vib. Acoust.
132
,
031003
(
2010
).
24.
C.
Sun
,
J.
Manimala
, and
H.
Huang
, “
Development of negative effective mass structures
,” Final technical report submitted as part of the NextGen Aeronautics Inc. prime contract for the DARPA Structural-Logic program (March
2013
), pp. 1–70.
25.
M. I.
Hussein
and
M. J.
Frazier
,
J. Sound Vib.
332
,
4767
(
2013
).
26.
R.
Zhu
,
X.
Liu
,
G.
Hu
,
C.
Sun
, and
G.
Huang
,
J. Sound Vib.
333
,
2759
(
2014
).
27.
Y.
Chen
,
M.
Barnhart
,
J.
Chen
,
G.
Hu
,
C.
Sun
, and
G.
Huang
,
Compos. Struct.
136
,
358
(
2016
).
28.
J. M.
Manimala
and
C.
Sun
,
J. Appl. Phys.
115
,
023518
(
2014
).
29.
R. H.
Pritchard
and
E. M.
Terentjev
,
J. Rheol.
61
,
187
(
2017
).
30.
T. E.
Twardowski
,
Introduction to Nanocomposite Materials: Properties, Processing, Characterization
(
DEStech Publications, Inc.
,
2007
).
31.
S. G.
Kelly
,
Fundamentals of Mechanical Vibrations
(
McGraw-Hill
,
Boston, USA
,
1992
).
32.
I.
Argatov
,
Tribol. Int.
63
,
213
(
2013
).
33.
P.
Peng
,
J.
Mei
, and
Y.
Wu
,
Phys. Rev. B
86
,
134304
(
2012
).
34.
H. N. G.
Wadley
,
K. P.
Dharmasena
,
M. Y.
He
,
R. M.
McMeeking
,
A. G.
Evans
,
T.
Bui-Thanh
, and
R.
Radovitzky
,
Int. J. Impact Eng.
37
,
317
(
2010
).
35.
Z.
Su
,
W.
Peng
,
Z.
Zhang
,
G.
Gogos
,
R.
Skaggs
, and
B.
Cheeseman
,
Int. J. Impact Eng.
35
,
336
(
2008
).
36.
B.
Li
,
L.
Ye
,
Z.
Li
,
Z.
Ma
, and
H.
Kalhori
,
J. Reinf. Plast. Compos.
34
,
1506
(
2015
).
37.
E.
Karpov
,
G.
Wagner
, and
W. K.
Liu
,
Int. J. Numer. Methods Eng.
62
,
1250
(
2005
).
You do not currently have access to this content.