Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

1.
A.
Eremin
,
E.
Gurentsov
, and
C.
Schulz
, “
Influence of the bath gas on the condensation of supersaturated iron atom vapour at room temperature
,”
J. Phys. D: Appl. Phys.
41
(
5
),
055203
(
2008
).
2.
A.
Giesen
,
A.
Kowalik
, and
P.
Roth
, “
Iron-atom condensation interpreted by a kinetic model and a nucleation model approach
,”
Phase Transitions
77
(
1–2
),
115
129
(
2004
).
3.
W. W.
Anderson
and
T. J.
Ahrens
, “
An equation of state for liquid iron and implications for the Earth's core
,”
J. Geophys. Res. B
99
(
B3
),
4273
4284
, (
1994
).
4.
Y.
Tanaka
,
A. Y.
Pigarov
,
R. D.
Smirnov
,
S. I.
Krasheninnikov
,
N.
Ohno
, and
Y.
Uesugi
, “
Modeling of dust-particle behavior for different materials in plasmas
,”
Phys. Plasmas
14
(
5
),
052504
(
2007
).
5.
B.
Bachmann
,
E.
Siewert
, and
J.
Schein
, “
In situ droplet surface tension and viscosity measurements in gas metal arc welding
,”
J. Phys. D: Appl. Phys.
45
,
175202
(
2012
).
6.
H.
Ki
,
P. S.
Mohanty
, and
J.
Mazumder
, “
Modelling of high-density laser-material interaction using fast level set method
,”
J. Phys. D: Appl. Phys.
34
(
3
),
364
372
(
2001
).
7.
S.
Paul
,
R.
Singh
, and
W.
Yan
, “
Thermal model for additive restoration of mold steels using crucible steel
,”
J. Manuf. Processes
24
,
346
354
(
2016
).
8.
P. D.
Desai
, “
Thermodynamic properties of iron and silicon
,”
J. Phys. Chem. Ref. Data
15
(
3
),
967
983
(
1986
).
9.
M.
Beutl
,
G.
Pottlacher
, and
H.
Jäger
, “
Thermophysical properties of liquid iron
,”
Int. J. Thermophys.
15
(
6
),
1323
1331
(
1994
).
10.
G.
Wille
,
F.
Millot
, and
J. C.
Rifflet
, “
Thermophysical properties of containerless liquid iron up to 2500 K
,”
Int. J. Thermophys.
23
(
5
),
1197
1206
(
2002
).
11.
Y.
Shibuta
and
T.
Suzuki
, “
Melting and nucleation of iron nanoparticles: A molecular dynamics study
,”
Chem. Phys. Lett.
445
(
4
),
265
270
(
2007
).
12.
S.
Velasco
,
F. L.
Román
,
J. A.
White
, and
A.
Mulero
, “
Prediction of the enthalpy of vaporization of metals and metalloids
,”
Fluid Phase Equilib.
244
(
1
),
11
15
(
2006
).
13.
V.
Svoboda
and
P.
Basařová
, “
Correlation of enthalpies of vaporization of pure substances: Part I
,”
Fluid Phase Equilib.
93
,
167
175
(
1994
).
14.
K.
Daun
,
B.
Stagg
,
F.
Liu
,
G.
Smallwood
, and
D.
Snelling
, “
Determining aerosol particle size distributions using time-resolved laser-induced incandescence
,”
Appl. Phys. B
87
(
2
),
363
372
(
2007
).
15.
H.
Michelsen
,
C.
Schulz
,
G. J.
Smallwood
, and
S.
Will
, “
Laser-induced incandescence: Particulate diagnostics for combustion, atmospheric, and industrial applications
,”
Prog. Energy Combust. Sci.
51
,
2
48
(
2015
).
16.
T. A.
Sipkens
,
R.
Mansmann
,
K. J.
Daun
,
N.
Petermann
,
J. T.
Titantah
,
M.
Karttunen
,
H.
Wiggers
,
T.
Dreier
, and
C.
Schulz
, “
In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence
,”
Appl. Phys. B
116
(
3
),
623
636
(
2014
).
17.
R. L.
Vander Wal
and
K. J.
Weiland
, “
Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction
,”
Appl. Phys. B
59
(
4
),
445
452
(
1994
).
18.
B.
Mewes
and
J. M.
Seitzman
, “
Soot volume fraction and particle size measurements with laser-induced incandescence
,”
Appl. Opt.
36
(
3
),
709
717
(
1997
).
19.
T. A.
Sipkens
,
N. R.
Singh
, and
K. J.
Daun
, “
Time-resolved laser-induced incandescence characterization of metal nanoparticles
,”
Appl. Phys. B
123
(
1
),
14
(
2017
).
20.
J.
Menser
,
K.
Daun
,
T.
Dreier
, and
C.
Schulz
, “
Laser-induced incandescence from laser-heated silicon nanoparticles
,”
Appl. Phys. B
122
(
11
),
277
(
2016
).
21.
S.
Schraml
,
S.
Dankers
,
K.
Bader
,
S.
Will
, and
A.
Leipertz
, “
Soot temperature measurements and implications for time-resolved laser-induced incandescence (TIRE-LII)
,”
Combust. Flame
120
(
4
),
439
450
(
2000
).
22.
H. A.
Michelsen
,
F.
Liu
,
B. F.
Kock
,
H.
Bladh
,
A.
Boiarciuc
,
M.
Charwath
,
T.
Dreier
,
R.
Hadef
,
M.
Hofmann
,
J.
Reimann
,
S.
Will
,
P.-E.
Bengtsson
,
H.
Bockhorn
,
F.
Foucher
,
K.-P.
Geigle
,
C.
Mounaim-Rousselle
,
C.
Schulz
,
R.
Stirn
, and
B.
Tribalet
, “
Modeling laser-induced incandescence of soot: A summary and comparison of LII models
,”
Appl. Phys. B
87
(
3
),
503
521
(
2007
).
23.
J. M.
Mitrani
,
M. N.
Shneider
,
B. C.
Stratton
, and
Y.
Raitses
, “
Modeling thermionic emission from laser-heated nanoparticles
,”
Appl. Phys. Lett.
108
(
5
),
054101
(
2016
).
24.
B. M.
Crosland
,
M. R.
Johnson
, and
K. A.
Thomson
, “
Analysis of uncertainties in instantaneous soot volume fraction measurements using two-dimensional, auto-compensating, laser-induced incandescence (2D-AC-LII)
,”
Appl. Phys. B
102
(
1
),
173
183
(
2011
).
25.
S.
Will
,
S.
Schraml
,
K.
Bader
, and
A.
Leipertz
, “
Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence
,”
Appl. Opt.
37
(
24
),
5647
5658
(
1998
).
26.
P. J.
Hadwin
,
T. A.
Sipkens
,
K. A.
Thomson
,
F.
Liu
, and
K. J.
Daun
, “
Quantifying uncertainty in soot volume fraction estimates using Bayesian inference of auto-correlated laser-induced incandescence measurements
,”
Appl. Phys. B
122
(
1
),
1
16
(
2016
).
27.
P. J.
Hadwin
,
T. A.
Sipkens
,
K. A.
Thomson
,
F.
Liu
, and
K. J.
Daun
, “
Quantifying uncertainty in auto-compensating laser-induced incandescence parameters due to multiple nuisance parameters
,”
Appl. Phys. B
123
(
4
),
114
128
(
2017
).
28.
P. J.
Hadwin
,
T. A.
Sipkens
,
K. A.
Thomson
,
F.
Liu
, and
K. J.
Daun
, “
A Kalman filter approach for uncertainty quantification in time-resolved laser-induced incandescence
,”
J. Opt. Soc. Am. A
35
(
2
),
386
396
(
2018
).
29.
U.
Von Toussaint
, “
Bayesian inference in physics
,”
Rev. Mod. Phys.
83
(
3
),
943
999
(
2011
).
30.
V.
Dose
, “
Bayesian inference in physics: Case studies
,”
Rep. Prog. Phys.
66
(
9
),
1421
1461
(
2003
).
31.
A. E.
Raftery
, “
Bayesian model selection in social research
,”
Sociol. Methodol.
25
(
1
),
111
163
(
1995
).
32.
T. A.
Sipkens
,
N. R.
Singh
,
K. J.
Daun
,
N.
Bizmark
, and
M.
Ioannidis
, “
Examination of the thermal accommodation coefficient used in the sizing of iron nanoparticles by time-resolved laser-induced incandescence
,”
Appl. Phys. B
119
(
4
),
561
675
(
2015
).
33.
K. J.
Daun
,
T. A.
Sipkens
,
J. T.
Titantah
, and
M.
Karttunen
, “
Thermal accommodation coefficients for laser-induced incandescence sizing of metal nanoparticles in monatomic gases
,”
Appl. Phys. B
112
(
3
),
409
420
(
2013
).
34.
T. A.
Sipkens
and
K. J.
Daun
, “
Using cube models to understand trends in thermal accommodation coefficients at high surface temperatures
,”
Int. J. Heat Mass Transfer
111
,
54
64
(
2017
).
35.
M.
Thiesen
, “
Bemerkung über die verdampfungswärme
,”
Verh. Dtsch. Phys. Ges.
16
(
6
),
80
82
(
1897
).
36.
M. E.
Fisher
,
Scaling, Universality and Renormalization Group Theory
, Lecture Notes in Physics (
Springer-Verlag
,
Berlin, Heidelberg
,
1982
).
37.
K. M.
Watson
, “
Thermodynamics of the liquid state
,”
Ind. End. Chem.
35
(
4
),
398
406
(
1943
).
38.
J.
Kendall
, “
The heat of vaporization of normal liquids
,”
J. Am. Chem. Soc.
36
(
8
),
1620
1630
(
1914
).
39.
W. J.
Jones
and
S. T.
Bowden
, “
Power laws of latent heat, orthobaric density, surface tension and viscosity of liquids
,”
London, Edinburgh Dublin Philos. Mag.
37
(
270
),
480489
(
1946
).
40.
S. T.
Bowden
, “
Variation of surface tension and heat of vaporization with temperature
,”
J. Chem. Phys.
23
(
12
),
2454
2455
(
1955
).
41.
R. M.
Winter
, “
Latent heat of vaporization as a function of temperature
,”
J. Phys. Chem.
32
(
4
),
576
582
(
1928
).
42.
P. M.
Silverberg
and
L. A.
Wenzel
, “
The variation of latent heat with temperature
,”
J. Chem. Eng. Data
10
(
4
),
363
366
(
1965
).
43.
D.
Marla
,
U. V.
Bhandarkar
, and
S. S.
Joshi
, “
Modeling nanosecond pulsed laser ablation: A focus on temperature dependence of material properties
,”
Manuf. Lett.
2
(
2
),
13
16
(
2014
).
44.
X.
Zhong
, “
An improved generalized Watson equation for prediction of latent heat of vaporization
,”
Chem. Eng. Commun.
29
(
1–6
),
257
269
(
1984
).
45.
V.
Svoboda
,
V.
Charvátová
,
V.
Majer
, and
J.
Pick
, “
Determination of heats of vaporization and some other thermodynamic quantities for four alkylcycloparaffins
,”
Collect. Czech. Chem. Commun.
46
(
12
),
2983
2988
(
1981
).
46.
F. L.
Román
,
J. A.
White
,
S.
Velasco
, and
A.
Mulero
, “
On the universal behavior of some thermodynamic properties along the whole liquid-vapor coexistence curve
,”
J. Chem. Phys.
123
(
12
),
124512
(
2005
).
47.
A.
Meyra
,
V.
Kuz
, and
G.
Zarragoicoechea
, “
Universal behavior of the enthalpy of vaporization: An empirical equation
,”
Fluid Phase Equilib.
218
(
2
),
205
207
(
2004
).
48.
L. W.
Fish
and
J.
Lielmezs
, “
General method for predicting the latent heat of vaporization
,”
Ind. Eng. Chem. Fundamen.
14
(
3
),
248
256
(
1975
).
49.
E. T.
Jaynes
, “
Prior probabilities
,”
IEEE Trans. Syst. Sci. Cybern.
4
(
3
),
227
241
(
1968
).
50.
A.
O'Hagan
,
Kendall's Advanced Theory of Statistics
(
University Press
,
Cambridge
,
1994
), Vol.
2B
.
51.
R. E.
Kass
and
A. E.
Raftery
, “
Bayes factors
,”
J. Am. Stat. Assoc.
90
(
430
),
773
795
(
1995
).
52.
S. H.
Cheung
and
J. L.
Beck
, “
Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters
,”
J. Eng. Mech.
135
(
4
),
243
255
(
2009
).
53.
S. J.
Grauer
,
P. J.
Hadwin
,
T. A.
Sipkens
, and
K. J.
Daun
, “
Measurement-based meshing, basis selection, and prior assignment in chemical species tomography
,”
Opt. Express
25
(
21
),
25135
25148
(
2017
).
54.
R. S.
Hixson
,
M. A.
Winkler
, and
M. L.
Hodgdon
, “
Sound speed and thermophysical properties of liquid iron and nickel
,”
Phys. Rev. B
42
(
10
),
6485
6491
(
1990
).
55.
CRC Handbook of Chemistry and Physics
, edited by
D.
Lide
, 95th ed. (
CRC Press
,
Boca Raton
,
2014
–2015).
56.
W.
Forsythe
,
Smithsonian Physical Tables
, 9th ed. (
Knovel
,
2003
).
57.
G.
Kaye
and
T.
Laby
,
Tables of Physical and Chemical Constants and Some Mathematical Functions
(
Longmans, Green and Co
.,
London
,
1928
).
58.
The National Physical Laboratory, Tables of Physical & Chemical Constants, Kaye & Laby Online,
2005
.
59.
A.
Earnshaw
and
N.
Greenwood
,
Chemistry of the Elements
(
Elsevier
,
1997
).
60.
D. A.
Young
and
B. J.
Alder
, “
Critical point of metals from the van der Waals model
,”
Phys. Rev. A
3
(
1
),
364
371
(
1971
).
61.
V.
Fortov
,
A.
Dremin
, and
A.
Leontev
, “
Estimation of critical-point parameters
,”
Teplofiz. Vys. Temp.
13
(
5
),
1072
1080
(
1975
).
62.
I. Z.
Kopp
,
Zh. Fiz. Khim.
41
(
5
),
1474
(
1967
).
63.
E. A.
Guggenheim
, “
The principle of corresponding states
,”
J. Chem. Phys.
13
(
7
),
253
261
(
1945
).
64.
B. J.
Keene
, “
Review of data for the surface tension of iron and its binary alloys
,”
Int. Mater. Rev.
33
(
1
),
1
37
(
1988
).
65.
T. A.
Sipkens
,
P. J.
Hadwin
,
S. J.
Grauer
,
J.
Menser
, and
K. J.
Daun
, “
A general error model for analysis of laser-induced incandescence signals
,”
Appl. Opt.
56
(
33
),
8436
8445
(
2017
).
66.
T.
Sipkens
,
P.
Hadwin
,
S.
Grauer
, and
K.
Daun
, MATLAB tools for a general TiRe-LII error model, figshare no. 10.6084/m9.figshare.5457253.v1 (
2017
).
67.
D.
Posada
and
T. R.
Buckley
, “
Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests
,”
Syst. Biol.
53
(
5
),
793
808
(
2004
).
68.
R.
Thompson
, “
A note on restricted maximum likelihood estimation with an alternative outlier model
,”
J. R. Stat. Soc. Ser. B
47
(
1
),
53
55
(
1985
).
69.
A. W.
Bowman
and
A.
Azzalini
,
Applied Smoothing Techniques for Data Analysis
(
Oxford University Press Inc
.,
New York
,
1997
).
70.
T.
Kitano
,
J.
Nishio
,
R.
Kurose
, and
S.
Komori
, “
Effects of ambient pressure, gas temperature and combustion reaction on droplet evaporation
,”
Combust. Flame
161
(
2
),
551
564
(
2014
).
You do not currently have access to this content.