A method is proposed for evaluating the potential piezoelectric response, that a ferroelectric material would exhibit after full poling, from elastic and dielectric measurements of the unpoled ceramic material. The method is based on the observation that the softening in a ferroelectric phase with respect to the paraelectric phase is of piezoelectric origin, and is tested on BaTiO3. The angular averages of the piezoelectric softening in unpoled ceramics are calculated for ferroelectric phases of different symmetries. The expression of the orientational average with the piezoelectric and dielectric constants of single crystal tetragonal BaTiO3 from the literature reproduces well the softening of the Young's modulus of unpoled ceramic BaTiO3, after a correction for the porosity. The agreement is good in the temperature region sufficiently far from the Curie temperature and from the transition to the orthorhombic phase, where the effect of fluctuations should be negligible, but deviations are found outside this region, and possible reasons for this are discussed. This validates the determination of the piezoelectric response by means of purely elastic measurements on unpoled samples. The method is indirect and, for quantitative assessments, requires the knowledge of the dielectric tensor. On the other hand, it does not require poling of the sample, and therefore is insensitive to inaccuracies from incomplete poling, and can even be used with materials that cannot be poled, for example, due to excessive electrical conductivity. While the proposed example of the Young's modulus of a ceramic provides an orientational average of all the single crystal piezoelectric constants, a Resonant Ultrasound Spectroscopy measurement of a single unpoled ceramic sample through the ferroelectric transition can in principle measure all the piezoelectric constants, together with the elastic ones.

1.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London
,
1971
).
2.
J.
Fialka
and
P.
Beneš
, “
Comparison of methods for the measurement of piezoelectric coefficients
,”
IEEE Trans. Instrum. Meas.
62
,
1047
(
2013
).
3.
G.
Tutuncu
,
L.
Fan
,
J.
Chen
,
X.
Xing
, and
J. L.
Jones
, “
Extensive domain wall motion and deaging resistance in morphotropic 0.55Bi(Ni1∕2Ti1∕2)O3-0.45PbTiO3 polycrystalline ferroelectrics
,”
Appl. Phys. Lett.
104
,
132907
(
2014
).
4.
L.
Tang
and
W.
Cao
, “
Temperature dependence of self-consistent full matrix material constants of lead zirconate titanate ceramics
,”
Appl. Phys. Lett.
106
,
052902
(
2015
).
5.
F.
Cordero
,
F.
Craciun
,
F.
Trequattrini
, and
C.
Galassi
, “
Piezoelectric softening in ferroelectrics: Ferroelectric versus antiferroelectric PbZr1–xTixO3
,”
Phys. Rev. B
93
,
174111
(
2016
).
6.
G. O.
Jones
and
P. A.
Thomas
, “
Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3
,”
Acta Crystallogr., Sect. B
58
,
168
178
(
2002
).
7.
F.
Cordero
,
F.
Craciun
,
F.
Trequattrini
,
E.
Mercadelli
, and
C.
Galassi
, “
Phase transitions and phase diagram of the ferroelectric perovskite (Na0.5Bi0.5)1–xBaxTiO3 by anelastic and dielectric measurements
,”
Phys. Rev. B
81
,
144124
(
2010
).
8.
Y.
Zhang
,
L.
Tang
,
H.
Tian
,
J.
Wang
,
W.
Cao
, and
Z.
Zhang
, “
Determination of temperature dependence of full matrix material constants of PZT-8 piezoceramics using only one sample
,”
J. Alloys Compd.
714
,
20
(
2017
).
9.
F.
Cordero
,
H. T.
Langhammer
,
T.
Müller
,
V.
Buscaglia
, and
P.
Nanni
, “
Rotational instability of the electric polarization and divergence of the shear elastic compliance
,”
Phys. Rev. B
93
,
064111
(
2016
).
10.
B. L.
Cheng
,
M.
Gabbay
, Jr.
,
W.
Duffy
, and
G.
Fantozzi
, “
Mechanical loss and Young's modulus associated with phase transitions in barium titanate based ceramics
,”
J. Mater. Sci.
31
,
4951
(
1996
).
11.
F.
Cordero
,
L.
Dalla Bella
,
F.
Corvasce
,
P. M.
Latino
, and
A.
Morbidini
, “
An insert for anelastic spectroscopy measurements from 80 K to 1100 K
,”
Meas. Sci. Technol.
20
,
015702
(
2009
).
12.
A. S.
Nowick
and
B. S.
Berry
,
Anelastic Relaxation in Crystalline Solids
(
Academic Press
,
New York
,
1972
).
13.
E. A.
Stern
, “
Character of order-disorder and displacive components in barium titanate
,”
Phys. Rev. Lett.
93
,
037601
(
2004
).
14.
S.
Lee
,
Z. K.
Liu
, and
M. H.
Kim
, “
Influence of nonstoichiometry on ferroelectric phase transition in BaTiO3
,”
J. Appl. Phys.
101
,
054119
(
2007
).
15.
B. A.
Strukov
and
A. P.
Levanyuk
,
Ferroelectric Phenomena in Crystals
(
Springer
,
Heidelberg
,
1998
).
16.
M. A.
Carpenter
and
E. H. K.
Salje
, “
Elastic anomalies in minerals due to structural phase transitions
,”
Eur. J. Mineral.
10
,
693
812
(
1998
).
17.
Y.
Ishibashi
and
M.
Iwata
, “
Theory of morphotropic phase boundary in solid-solution systems of perovskite-type oxide ferroelectrics: Elastic properties
,”
Jpn. J. Appl. Phys., Part 1
38
,
1454
1458
(
1999
).
18.
B. L.
Cheng
,
M.
Gabbay
, and
G.
Fantozzi
, “
Anelastic relaxation associated with the motion of domain walls in barium titanate ceramics
,”
J. Mater. Sci.
31
,
4141
4147
(
1996
).
19.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Oxford University Press
,
Oxford
,
1977
).
20.
I. S.
Yu
and
M. P.
Shaskolskaya
,
Fundamentals of Crystal Physics
(
Mir Publishers
,
Moscow
,
1982
).
21.
J. F.
Nye
,
Physical Properties of Crystals; Their Representation by Tensors and Matrices
(
Oxford University Press
,
Oxford, UK
,
1985
).
22.
H. G.
Baerwald
, “
Thermodynamic theory of ferroelectric ceramics
,”
Phys. Rev.
105
,
480
(
1957
).
23.
W.
Lu
,
D. N.
Fang
,
C. Q.
Li
, and
K. C.
Hwang
, “
Nonlinear electric-mechanical behavior and micromechanics modelling of ferroelectric domain evolution
,”
Acta Mater.
47
,
2913
(
1999
).
24.
F. X.
Li
and
R. K. N. D.
Rajapakse
, “
Analytical saturated domain orientation textures and electromechanical properties of ferroelectric ceramics due to electric/mechanical poling
,”
J. Appl. Phys.
101
,
054110
(
2007
).
25.
M. J.
Haun
,
E.
Furman
,
S. J.
Jang
, and
L. E.
Cross
, “
Modeling of the electrostrictive, dielectric, and piezoelectric properties of ceramic PbTi03
,”
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
36
,
393
(
1989
).
26.
J. G.
Berryman
, “
Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries
,”
J. Mech. Phys. Solids
53
,
2141
(
2005
).
27.
D.
Berlincourt
and
H.
Jaffe
, “
Elastic and piezoelectric coefficients of single-crystal barium titanate
,”
Phys. Rev.
111
,
143
(
1958
).
28.
S. C.
Abrahams
, “
Atomic displacements at and order of all phase transitions in multiferroic YMnO3 and BaTiO3
,”
Acta Crystallogr., Sect. B
65
,
450
(
2009
).
29.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
, “
A phenomenological thermodynamic potential for BaTiO3 single crystals
,”
J. Appl. Phys.
98
,
064101
(
2005
).
30.
Y. L.
Wang
,
A. K.
Tagantsev
,
D.
Damjanovic
,
N.
Setter
,
V. K.
Yarmarkin
,
A. I.
Sokolov
, and
I. A.
Lukyanchuk
, “
Landau thermodynamic potential for BaTiO3
,”
J. Appl. Phys.
101
,
104115
(
2007
).
31.
K. M.
Rabe
,
A. H.
Ahn
, and
J. M.
Triscone
,
Physics of Ferroelectrics. A Modern Perspective
, Topics in Applied Physics (
Springer
,
2007
).
32.
S.
Kashida
,
I.
Hatta
,
A.
Ikushima
, and
Y.
Yamada
, “
Ultrasonic velocities in BaTiO3
,”
J. Phys. Soc. Jpn.
34
,
997
(
1973
).
33.
O.
Aktas
,
M. A.
Carpenter
, and
E. H.
Salje
, “
Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy
,”
Appl. Phys. Lett.
103
,
142902
(
2013
).
34.
J. H.
Ko
,
T. H.
Kim
,
K.
Roleder
,
D.
Rytz
, and
S.
Kojima
, “
Precursor dynamics in the ferroelectric phase transition of barium titanate single crystals studied by Brillouin light scattering
,”
Phys. Rev. B
84
,
094123
(
2011
).
35.
M. P.
Fontana
and
M.
Lambert
, “
Linear disorder and temperature dependence of Raman scattering in BaTiO3
,”
Solid State Commun.
10
(
1
),
1
4
(
1972
).
36.
G.
Burns
and
F. H.
Dacol
, “
Polarization in the cubic phase of BaTiO3
,”
Solid State Commun.
42
,
9
(
1982
).
37.
A. M.
Pugachev
,
V. I.
Kovalevskii
,
N. V.
Surovtsev
,
S.
Kojima
,
S. A.
Prosandeev
,
I. P.
Raevski
, and
S. I.
Raevskaya
, “
Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation
,”
Phys. Rev. Lett.
108
,
247601
(
2012
).
38.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
, “
Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical loading
,”
J. Am. Ceram. Soc.
94
,
293
(
2011
).
39.
F.
Cordero
,
F.
Craciun
, and
C.
Galassi
, “
Low-temperature phase transformations of PbZr1–xTixO3 in the morphotropic phase-boundary region
,”
Phys. Rev. Lett.
98
,
255701
(
2007
).
40.
T. T.
Wu
, “
The effect of inclusion shape on the elastic moduli of a two-phase material
,”
Int. J. Solids Struct.
2
(
1
),
1
8
(
1966
).
41.
M. L.
Dunn
, “
Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics
,”
J. Appl. Phys.
78
,
1533
(
1995
).
42.
H.
Ledbetter
,
M.
Lei
, and
S.
Kim
, “
Elastic constants, Debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides
,”
Phase Transitions
23
,
61
(
1990
).
43.
F.
Cordero
,
F.
Trequattrini
,
F.
Craciun
, and
C.
Galassi
, “
Effects of aging and annealing on the polar and antiferrodistortive components of the antiferroelectric transition in PbZr1–xTixO3
,”
Phys. Rev. B
89
,
214102
(
2014
).
44.
F.
Cordero
,
F.
Craciun
,
F.
Trequattrini
,
P.
Galizia
, and
C.
Galassi
, “
Elastic aging from coexistence and transformations of ferroelectric and antiferroelectric states in PZT
,”
J. Appl. Phys.
120
,
064104
(
2016
).
45.
M.
Born
and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Oxford University Press
,
Glasgow
,
1954
).
46.
J. B.
Wachtman
, Jr.
,
W. E.
Tefft
,
D. G.
Lam
, Jr.
, and
C. S.
Apstein
, “
Exponential temperature dependence of Young's modulus for several oxides
,”
Phys. Rev.
122
,
1754
(
1961
).
47.
A.
Schaefer
,
H.
Schmitt
, and
A.
Dörr
, “
Elastic and piezoelectric coefficients of TSSG barium titanate single crystals
,”
Ferroelectrics
69
,
253
(
1986
).
48.
D.
Damjanovic
,
F.
Brem
, and
N.
Setter
, “
Crystal orientation dependence of the piezoelectric d33 coefficient in tetragonal BaTiO3 as a function of temperature
,”
Appl. Phys. Lett.
80
,
652
(
2002
).
49.
M.
Budimir
,
D.
Damjanovic
, and
N.
Setter
, “
Piezoelectric anisotropy-phase transition relations in perovskite single crystals
,”
J. Appl. Phys.
94
,
6753
(
2003
).
50.
A. J.
Bell
, “
Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes
,”
J. Appl. Phys.
89
,
3907
3914
(
2001
).
You do not currently have access to this content.