Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.

1.
M.
König
,
S.
Wiedmann
,
C.
Brüne
,
A.
Roth
,
H.
Buhmann
,
L. W.
Molenkamp
,
X.-L.
Qi
, and
S.-C.
Zhang
, “
Quantum spin hall insulator state in HgTe quantum wells
,”
Science
318
,
766
(
2007
).
2.
M. C.
Rechtsman
,
J. M.
Zeuner
,
Y.
Plotnik
,
Y.
Lumer
,
D.
Podolsky
,
F.
Dreisow
,
S.
Nolte
,
M.
Segev
, and
A.
Szameit
, “
Photonic Floquet topological insulators
,”
Nature
496
,
196
(
2013
).
3.
G. Q.
Liang
and
Y. D.
Chong
, “
Optical resonator analog of a two-dimensional topological insulator
,”
Phys. Rev. Lett.
110
,
203904
(
2013
).
4.
A. B.
Khanikaev
,
S. H.
Mousavi
,
W. K.
Tse
,
M.
Kargarian
,
A. H.
MacDonald
, and
G.
Shvets
, “
Photonic topological insulators
,”
Nat. Mater.
12
,
233
(
2013
).
5.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
, “
Topological photonics
,”
Nat. Photonics
8
,
821
(
2014
).
6.
X.
Cheng
,
C.
Jouvaud
,
X.
Ni
,
S. H.
Mousavi
,
A. Z.
Genack
, and
A. B.
Khanikaev
, “
Robust reconfigurable electromagnetic pathways within a photonic topological insulator
,”
Nat. Mater.
15
,
542
(
2016
).
7.
M.
Xiao
,
G.
Ma
,
Z.
Yang
,
P.
Sheng
,
Z. Q.
Zhang
, and
C. T.
Chan
, “
Geometric phase and band inversion in periodic acoustic systems
,”
Nat. Phys.
11
,
240
(
2015
).
8.
Y. G.
Peng
,
C. Z.
Qin
,
D. G.
Zhao
,
Y. X.
Shen
,
X. Y.
Xu
,
M.
Bao
,
H.
Jia
, and
X. F.
Zhu
, “
Experimental demonstration of anomalous Floquet topological insulator for sound
,”
Nat. Commun.
7
,
13368
(
2016
).
9.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
, “
Acoustic topological insulator and robust one-way sound transport
,”
Nat. Phys.
12
,
1124
(
2016
).
10.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
, “
Observation of topological valley transport of sound in sonic crystals
,”
Nat. Phys.
13
,
369
(
2017
).
11.
F.
Li
,
X.
Huang
,
J.
Lu
,
J.
Ma
, and
Z.
Liu
, “
Weyl points and Fermi arcs in a chiral phononic crystal
,”
Nat. Phys.
14
,
30
34
(
2017
).
12.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alu
, “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
13.
Z. G.
Chen
and
Y.
Wu
, “
Tunable topological phononic crystals
,”
Phys. Rev. Appl.
5
,
054021
(
2016
).
14.
Z.
Yang
and
B.
Zhang
, “
Acoustic Type-II Weyl nodes from stacking dimerized chains
,”
Phys. Rev. Lett.
117
,
224301
(
2016
).
15.
Z.
Yang
,
F.
Gao
,
X.
Shi
,
X.
Lin
,
Z.
Gao
,
Y.
Chong
, and
B.
Zhang
, “
Topological acoustics
,”
Phys. Rev. Lett.
114
,
114301
(
2015
).
16.
X.
Ni
,
C.
He
,
X.-C.
Sun
,
X.-p.
Liu
,
M.-H.
Lu
,
L.
Feng
, and
Y.-F.
Chen
, “
Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow
,”
New J. Phys.
17
,
053016
(
2015
).
17.
R.
Fleury
,
A. B.
Khanikaev
, and
A.
Alu
, “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
(
2016
).
18.
J.
Mei
,
Z.
Chen
, and
Y.
Wu
, “
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
,”
Sci. Rep.
6
,
32752
(
2016
).
19.
Y. G.
Peng
,
Y. X.
Shen
,
D. G.
Zhao
, and
X. F.
Zhu
, “
Low-loss and broadband anomalous Floquet topological insulator for airborne sound
,”
Appl. Phys. Lett.
110
,
173505
(
2017
).
20.
Z.
Zhang
,
Q.
Wei
,
Y.
Cheng
,
T.
Zhang
,
D.
Wu
, and
X.
Liu
, “
Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice
,”
Phys. Rev. Lett.
118
,
084303
(
2017
).
21.
C.
Brendel
,
V.
Peano
,
O. J.
Painter
, and
F.
Marquardt
, “
Pseudomagnetic fields for sound at the nanoscale
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
E3390
(
2017
).
22.
M. S.
Rudner
,
N. H.
Lindner
,
E.
Berg
, and
M.
Levin
, “
Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems
,”
Phys. Rev. X
3
,
031005
(
2013
).
23.
D.
Leykam
,
M. C.
Rechtsman
, and
Y. D.
Chong
, “
Anomalous topological phases and unpaired Dirac cones in photonic Floquet topological insulators
,”
Phys. Rev. Lett.
117
,
013902
(
2016
).
24.
L. J.
Maczewsky
,
J. M.
Zeuner
,
S.
Nolte
, and
A.
Szameit
, “
Observation of photonic anomalous Floquet topological insulators
,”
Nat. Commun.
8
,
13756
(
2017
).
25.
D.
Carpentier
,
P.
Delplace
,
M.
Fruchart
, and
K.
Gawedzki
, “
Topological index for periodically driven time-reversal invariant 2D systems
,”
Phys. Rev. Lett.
114
,
106806
(
2015
).
26.
P.
Delplace
,
M.
Fruchart
, and
C.
Tauber
, “
Phase rotation symmetry and the topology of oriented scattering networks
,”
Phys. Rev. B
95
,
205413
(
2017
).
27.
M.
Fruchart
, “
Complex classes of periodically driven topological lattice systems
,”
Phys. Rev. B
93
,
115429
(
2016
).
28.
M.
Bellec
,
C.
Michel
,
H.
Zhang
,
S.
Tzortzakis
, and
P.
Delplace
, “
Non-diffracting states in one-dimensional Floquet photonic topological insulators
,”
Europhys. Lett.
119
,
14003
(
2017
).
29.
J.
Zhu
,
Y.
Chen
,
X.
Zhu
,
F. J.
Garcia-Vidal
,
X.
Yin
,
W.
Zhang
, and
X.
Zhang
, “
Acoustic rainbow trapping
,”
Sci. Rep.
3
,
1728
(
2013
).
30.
Y.
Chen
,
H.
Liu
,
M.
Reilly
,
H.
Bae
, and
M.
Yu
, “
Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
,”
Nat. Commun.
5
,
5247
(
2014
).
31.
Y. X.
Shen
,
Y. G.
Peng
,
X. C.
Chen
,
D. G.
Zhao
, and
X. F.
Zhu
, “
Observation of low-loss broadband supermode propagation in coupled acoustic waveguide complex
,”
Sci. Rep.
7
,
45603
(
2017
).
32.
X.
Zhu
,
B.
Liang
,
W.
Kan
,
Y.
Peng
, and
J.
Cheng
, “
Deep-subwavelength-scale directional sensing based on highly localized dipolar Mie resonances
,”
Phys. Rev. Appl.
5
,
054015
(
2016
).
33.
H. S.
Eisenberg
,
Y.
Silberberg
,
R.
Morandotti
, and
J. S.
Aitchison
, “
Diffraction management
,”
Phys. Rev. Lett.
85
,
1863
(
2000
).
34.
A.
Szameit
,
I. L.
Garanovich
,
M.
Heinrich
,
A. A.
Sukhorukov
,
F.
Dreisow
,
T.
Pertsch
,
S.
Nolte
,
A.
Tunnermann
,
S.
Longhi
, and
Y. S.
Kivshar
, “
Observation of two-dimensional dynamic localization of light
,”
Phys. Rev. Lett.
104
,
223903
(
2010
).
You do not currently have access to this content.