We introduce an active concept for achieving acoustic metasurfaces with steerable reflection properties, effective over a wide frequency band. The proposed active acoustic metasurface consists of a surface array of subwavelength loudspeaker diaphragms, each with programmable individual active acoustic impedances allowing for local control over the different reflection phases over the metasurface. The active control framework used for controlling the reflection phase over the metasurface is derived from the Active Electroacoustic Resonator concept. Each unit-cell simply consists of a current-driven electrodynamic loudspeaker in a closed box, whose acoustic impedance at the diaphragm is judiciously adjusted by connecting an active electrical control circuit. The control is known to achieve a wide variety of acoustic impedances on a single loudspeaker diaphragm used as an acoustic resonator, with the possibility to shift its resonance frequency by more than one octave. This paper presents a methodology for designing such active metasurface elements. An experimental validation of the achieved individual reflection coefficients is presented, and full wave simulations present a few examples of achievable reflection properties, with a focus on the bandwidth of operation of the proposed control concept.

1.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
,
Nat. Rev. Mater.
1
,
16001
(
2016
).
2.
H.
Esfahlani
,
S.
Karkar
,
H.
Lissek
, and
J. R.
Mosig
,
Sci. Rep.
6
,
18911
(
2016
).
3.
H.
Esfahlani
,
S.
Karkar
,
H.
Lissek
, and
J. R.
Mosig
,
J. Acoust. Soc. Am.
139
,
3259
3266
(
2016
).
4.
H.
Esfahlani
,
S.
Karkar
,
H.
Lissek
, and
J. R.
Mosig
,
Phys. Rev. B
94
,
014302
(
2016
).
5.
X.
Wang
,
D.
Mao
, and
Y.
Li
,
Sci. Rep.
7
,
870
(
2017
).
6.
H.
Esfahlani
,
H.
Lissek
, and
J. R.
Mosig
,
Phys. Rev. B
95
,
024312
(
2017
).
7.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alù
,
Nat. Commun.
6
,
8260
(
2015
).
8.
S.
Yves
,
R.
Fleury
,
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
,
New J. Phys.
19
,
075003
(
2017
).
9.
Y.
Li
and
B. M.
Assouar
,
Appl. Phys. Lett.
108
,
063502
(
2016
).
10.
Y.
Li
,
B.
Liang
,
Z.-M.
Gu
,
X.-Y.
Zou
, and
J.-C.
Cheng
,
Sci. Rep.
3
,
2546
(
2013
).
11.
C.
Faure
,
O.
Richoux
,
S.
Félix
, and
V.
Pagneux
,
Appl. Phys. Lett.
108
,
064103
(
2016
).
12.
N.
Jiménez
,
T. J.
Cox
,
V.
Romero-García
, and
J.-P.
Groby
,
Sci. Rep.
7
,
5389
(
2017
).
13.
S.
Lani
,
K. G.
Sabra
, and
F. L.
Degertekin
,
J. Appl. Phys.
117
,
045308
(
2015
).
14.
L. D.
Landau
,
J.
Bell
,
M.
Kearsley
,
L.
Pitaevskii
,
E.
Lifshitz
, and
J.
Sykes
,
Electrodynamics of Continuous Media
(
Elsevier
,
2013
), Vol.
8
.
15.
B.-I.
Popa
,
D.
Shinde
,
A.
Konneker
, and
S. A.
Cummer
,
Phys. Rev. B
91
,
220303
(
2015
).
16.
X.
Chen
,
P.
Liu
,
Z.
Hou
, and
Y.
Pei
,
Sci. Rep.
7
,
9050
(
2017
).
17.
H.
Lissek
,
R.
Boulandet
, and
R.
Fleury
,
J. Acoust. Soc. Am.
129
,
2968
2978
(
2011
).
18.
R.
Boulandet
,
E.
Rivet
, and
H.
Lissek
,
Acta Acust. Acust.
102
,
696
704
(
2016
).
19.
E.
Rivet
,
S.
Karkar
, and
H.
Lissek
,
IEEE Trans. Control Syst. Technol.
25
,
63
72
(
2017
).
20.
E.
Rivet
,
S.
Karkar
, and
H.
Lissek
,
Acta Acust. Acust.
103
,
1025
1036
(
2017
).
21.
R.
Fleury
,
D. L.
Sounas
, and
A.
Alù
,
Phys. Rev. Lett.
113
,
023903
(
2014
).
22.
R.
Fleury
,
D.
Sounas
, and
A.
Alù
,
Nat. Commun.
6
,
5905
(
2015
).
23.
R.
Fleury
,
D. L.
Sounas
, and
A.
Al
,
IEEE J. Sel. Top. Quantum Electron.
22
,
121
(
2016
).
24.

Here we define the acoustic impedance as a ratio between sound pressure and particle velocity, although it is conventionally defined as the ratio between pressure and flow velocity.25 

25.
M.
Rossi
,
Audio
(
Presses Polytechniques Fédérales de Lausanne
,
2007
), Sec. 9.1, pp.
533
540
.
26.
U.
Seidel
and
W.
Klippel
, in Program of 110 Convention: Audio Engineering Society (
2001
).
27.
E.
Rivet
, “
Room modal equalisation with electroacoustic absorbers
,” Ph.D. thesis (
Ecole Polytechnique Fédérale de Lausanne
,
2016
).
28.
ISO 10534-2-1998,
Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method
(
ISO
,
Geneva, Switzerland
,
1998
).
You do not currently have access to this content.