The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

1.
K.
von Klitzing
,
Rev. Mod. Phys.
58
,
519
(
1986
).
2.
R. B.
Laughlin
,
Phys. Rev. Lett.
50
,
1395
(
1983
).
3.
C. L.
Kane
and
E. J.
Mele
,
Phys. Rev. Lett.
95
,
226801
(
2005
).
4.
B. A.
Bernevig
,
T. L.
Hughes
, and
S.-C.
Zhang
,
Science
314
,
1757
(
2006
).
5.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
(
2010
).
6.
X.-L.
Qi
and
S.-C.
Zhang
,
Rev. Mod. Phys.
83
,
1057
(
2011
).
7.
Z.
Wang
,
Y.
Chong
,
J.
Joannopoulos
, and
M.
Soljacic
,
Nature
461
,
772
(
2009
).
8.
A. B.
Khanikaev
,
S. H.
Mousavi
,
W.-K.
Tse
,
M.
Kargarian
,
A. H.
MacDonald
, and
G.
Shvets
,
Nat. Mater.
12
,
233
(
2013
).
9.
M.
Hafezi
,
S.
Mittal
,
J.
Fan
,
A.
Migdall
, and
J. M.
Taylor
,
Nat. Photonics
7
,
1001
(
2013
).
10.
M. C.
Rechtsman
,
J. M.
Zeuner
,
Y.
Plotnik
,
Y.
Lumer
,
D.
Podolsky
,
F.
Dreisow
,
S.
Nolte
,
M.
Segev
, and
A.
Szameit
,
Nature
496
,
196
(
2013
).
11.
L.
Lu
,
J. D.
Joannopoulos
, and
M.
Soljačić
,
Nat. Photonics
8
,
821
(
2014
).
12.
W.
Chen
,
S.-J.
Jiang
,
X.-D.
Chen
,
B.
Zhu
,
L.
Zhou
,
J.-W.
Dong
, and
C. T.
Chan
,
Nat. Commun.
5
,
5782
(
2014
).
13.
F.
Gao
,
Z.
Gao
,
X.
Shi
,
Z.
Yang
,
X.
Lin
,
H.
Xu
,
J. D.
Joannopoulos
,
M.
Soljacic
,
H.
Chen
,
L.
Lu
,
Y.
Chong
, and
B.
Zhang
,
Nat. Commun.
7
,
11619
(
2016
).
14.
Z.
Yang
,
F.
Gao
,
X.
Shi
,
X.
Lin
,
Z.
Gao
,
Y.
Chong
, and
B.
Zhang
,
Phys. Rev. Lett.
114
,
114301
(
2015
).
15.
X.
Ni
,
C.
He
,
X.-C.
Sun
,
X.-P.
Liu
,
M.-H.
Lu
,
L.
Feng
, and
Y.-F.
Chen
,
New J. Phys.
17
,
053016
(
2015
).
16.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alu
,
Nat. Commun.
6
,
8260
(
2015
).
17.
M.
Xiao
,
G.
Ma
,
Z.
Yang
,
Z. Q.
Zhang
, and
C. T.
Chan
,
Nat. Phys.
11
,
240
(
2015
).
18.
M.
Xiao
,
W.
Chen
,
W.
He
, and
C. T.
Chan
,
Nat. Phys.
11
,
920
(
2015
).
19.
C.
He
,
X.
Ni
,
H.
Ge
,
X.-C.
Sun
,
Y.-B.
Chen
,
M.-H.
Lu
,
X.-P.
Liu
, and
Y.-F.
Chen
,
Nat. Phys.
12
,
1124
(
2016
).
20.
Z.
Yang
and
B.
Zhang
,
Phys. Rev. Lett.
117
,
224301
(
2016
).
21.
Y.
Peng
,
C.
Qin
,
D.
Zhao
,
Y.
Shen
,
X.
Xu
,
M.
Bao
,
H.
Jia
, and
X.
Zhu
,
Nat. Commun.
7
,
13368
(
2016
).
22.
Z.
Yang
,
F.
Gao
,
Y.
Yang
, and
B.
Zhang
,
Phys. Rev. Lett.
118
,
194301
(
2017
).
23.
X.
Xu
,
W.
Yao
,
D.
Xiao
, and
T. F.
Heinz
,
Nat. Phys.
10
,
343
(
2014
).
24.
D.
Xiao
,
W.
Yao
, and
Q.
Niu
,
Phys. Rev. Lett.
99
,
236809
(
2007
).
25.
J.
Lu
,
C.
Qiu
,
M.
Ke
, and
Z.
Liu
,
Phys. Rev. Lett.
116
,
093901
(
2016
).
26.
J.
Lu
,
C.
Qiu
,
L.
Ye
,
X.
Fan
,
M.
Ke
,
F.
Zhang
, and
Z.
Liu
,
Nat. Phys.
13
,
369
(
2016
).
27.
G. W.
Semenoff
,
Phys. Rev. Lett.
101
,
087204
(
2008
).

Supplementary Material

You do not currently have access to this content.