The propagation of long-wavelength sound in the presence of a metasurface made by arranging acoustic resonators periodically upon or slightly above an impervious substrate is studied. The method of two-scale asymptotic homogenization is used to derive effective boundary conditions, which account for both the surface corrugation and the low-frequency resonance. This method is applied to periodic arrays of resonators of any shape operating in the long-wavelength regime. The approach relies on the existence of a locally periodic boundary layer developed in the vicinity of the metasurface, where strong near-field interactions of the resonators with each other and with the substrate take place. These local effects give rise to an effective surface admittance supplemented by nonlocal contributions from the simple and double gradients of the pressure at the surface. These phenomena are illustrated for the periodic array of cylindrical Helmholtz resonators with an extended inner duct. Effects of the centre-to-centre spacing and orientation of the resonators' opening on the nonlocality and apparent resonance frequency are studied. The model could be used to design metasurfaces with specific effective boundary conditions required for particular applications.

1.
D. R.
Chowdhury
,
N.
Xu
,
W.
Zhang
, and
R.
Singh
,
J. Appl. Phys.
118
,
023104
(
2015
).
2.
C.
Boutin
,
L.
Schwan
, and
M. S.
Dietz
,
J. Appl. Phys.
117
,
064902
(
2015
).
3.
N.
Jiménez
,
W.
Huang
,
V.
Romero-García
,
V.
Pagneux
, and
J.-P.
Groby
,
Appl. Phys. Lett.
109
,
121902
(
2016
).
4.
L.
Schwan
,
O.
Umnova
, and
C.
Boutin
,
Wave Motion
72
,
154
(
2017
).
5.
C.
Zwikker
and
C. W.
Kosten
,
Sound Absorbing Materials
(
Elsevier Publishing Company
,
1949
).
6.
J.-F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media
(
John Wiley and Sons, Ltd
,
2009
).
7.
D. R.
Smith
,
S.
Schultz
,
P.
Markos
, and
C. M.
Soukoulis
,
Phys. Rev. B
65
,
195104
(
2002
).
8.
E.
Sanchez-Palencia
,
Non-Homogeneous Media and Vibration Theory
, Lecture Notes in Physics (
Springer-Verlag
,
Berlin, Heidelberg
,
1980
), Vol.
127
.
9.
J.-L.
Auriault
,
C.
Boutin
, and
C.
Geindreau
,
Homogenization of Coupled Phenomena in Heterogenous Media
(
ISTE Ltd. and Wiley
,
2009
).
10.
G.
Nguetseng
and
E.
Sanchez-Palencia
,
Local Effects in the Analysis of Structures
(
Elsevier Science Publishers B. V.
,
1985
), Chap. Stress concentration for defects distributed near a surface, pp.
55
74
.
11.
G.
Nguetseng
,
Model. Math. Analyse Num.
19
,
33
(
1985
).
12.
C. L.
Holloway
and
E. F.
Kuester
,
Radio Sci.
35
,
661
, (
2000
).
13.
C.
Boutin
and
P.
Roussillon
,
Int. J. Eng. Sci.
44
,
180
(
2006
).
14.
J.-J.
Marigo
and
A.
Maurel
,
J. Acoust. Soc. Am.
140
,
260
(
2016
).
15.
I.
Bashir
,
S.
Taherzadeh
, and
K.
Attenborough
,
J. Acoust. Soc. Am.
133
,
1281
(
2013
).
16.
C.
Boutin
,
J. Acoust. Soc. Am.
122
,
1888
(
2007
).
17.
C.
Boutin
,
Int. J. Heat Mass Transfer
38
,
3181
(
1995
).
18.
C.
Boutin
,
Int. J. Solids Struct.
33
,
1023
(
1996
).
19.
J.-J.
Marigo
and
C.
Pideri
,
Int. J. Damage Mech.
20
,
1151
(
2011
).
20.
B.
Delourme
,
H.
Haddar
, and
P.
Joly
,
J. Math. Pures Appl.
98
,
28
(
2012
).
21.
J.-J.
Marigo
and
A.
Maurel
,
Proc. R. Soc. London, Ser. A
472
,
20160068
(
2016
).
22.
J.-J.
Marigo
,
A.
Maurel
,
K.
Pham
, and
A.
Sbitti
,
J. Elasticity
128
,
265
(
2017
).
23.
J.-L.
Auriault
and
J.
Lewandowska
,
Geotechnique
43
,
457
(
1993
).
24.
P.
Germain
,
SIAM J. Appl. Math.
25
,
556
(
1973
).
25.
J.
Soubestre
and
C.
Boutin
,
Mech. Mater.
55
,
16
(
2012
).
26.
D.
Lafarge
and
N.
Nemati
,
Wave Motion
50
,
1016
(
2013
).
27.
C.
Lagarrigue
,
J.-P.
Groby
,
V.
Tournat
,
O.
Dazel
, and
O.
Umnova
,
J. Acoust. Soc. Am.
134
,
4670
(
2013
).
You do not currently have access to this content.