We study covalent bonds between p-doped Si wafers (resistivity ∼10 Ω cm) fabricated on a recently developed 200 mm high-vacuum system. Oxide- and void free interfaces were obtained by argon (Ar) or neon (Ne) sputtering prior to wafer bonding at room temperature. The influence of the sputter induced amorphous Si layer at the bonding interface on the electrical behavior is accessed with temperature-dependent current-voltage measurements. In as-bonded structures, charge transport is impeded by a potential barrier of 0.7 V at the interface with thermionic emission being the dominant charge transport mechanism. Current-voltage characteristics are found to be asymmetric which can tentatively be attributed to electric dipole formation at the interface as a result of the time delay between the surface preparation of the two bonding partners. Electron beam induced current measurements confirm the corresponding asymmetric double Schottky barrier like band-alignment. Moreover, we demonstrate that defect annihilation at a low temperature of 400 °C increases the electrical conductivity by up to three orders of magnitude despite the lack of recrystallization of the amorphous layer. This effect is found to be more pronounced for Ne sputtered surfaces which is attributed to the lighter atomic mass compared to Ar, inducing weaker lattice distortions during the sputtering.

1.
U.
Gösele
and
Q.-Y.
Tong
,
Annu. Rev. Mater. Sci.
28
,
215
(
1998
).
2.
Z. H.
Zhu
,
F. E.
Ejeckam
,
Y.
Qian
,
J.
Zhang
,
Z.
Zhang
,
G. L.
Christenson
, and
Y. H.
Lo
,
IEEE J. Sel. Top. Quantum Electron.
3
,
927
(
1997
).
3.
Q. Y.
Tong
,
E.
Schmidt
,
U.
Gösele
, and
M.
Reiche
,
Appl. Phys. Lett.
64
,
625
(
1994
).
4.
O.
Engstrom
,
S.
Bengtsson
,
G. I.
Andersson
,
M. O.
Andersson
, and
A.
Jauhiainen
,
J. Electrochem. Soc.
139
,
3638
(
1992
).
5.
H.
Takagi
,
K.
Kikuchi
,
R.
Maeda
,
T. R.
Chung
, and
T.
Suga
,
Appl. Phys. Lett.
68
,
2222
(
1996
).
6.
M.
Morimoto
,
J.
Liang
,
S.
Nishida
, and
N.
Shigekawa
,
Jpn. J. Appl. Phys., Part 1
54
,
030212
(
2015
).
7.
J.
Liang
,
T.
Miyazaki
,
M.
Morimoto
,
S.
Nishida
, and
N.
Shigekawa
,
J. Appl. Phys.
114
,
183703
(
2013
).
8.
C.
Flötgen
,
N.
Razek
,
V.
Dragoi
, and
M.
Wimplinger
,
ECS Trans.
64
,
103
(
2014
).
9.
B.
Hoex
,
J.
Schmidt
,
P.
Pohl
,
M. C. M.
van de Sanden
, and
W. M. M.
Kessels
,
J. Appl. Phys.
104
,
44903
(
2008
).
11.
W. P.
Maszara
,
G.
Goetz
,
A.
Caviglia
, and
J. B.
McKitterick
,
J. Appl. Phys.
64
,
4943
(
1988
).
12.
S.
Bengtsson
and
O.
Engström
,
J. Appl. Phys.
66
,
1231
(
1989
).
13.
N. C.-C.
Lu
,
C. Y.
Lu
,
L.
Gerzberg
, and
J. D.
Meindl
,
IEEE Trans. Electron Devices
30
,
137
(
1983
).
14.
E.
Ziegler
,
W.
Siegel
,
E.
Blumtritt
, and
O.
Breitenstein
,
Phys. Status Solidi A
72
,
593
(
1982
).
15.
D. B.
Holt
,
B.
Raza
, and
A.
Wojcik
,
Mater. Sci. Eng. B
42
,
14
(
1996
).
16.
S.
Roorda
,
W. C.
Sinke
,
J. M.
Poate
,
D. C.
Jacobson
,
S.
Dierker
,
B. S.
Dennis
,
D. J.
Eaglesham
,
F.
Spaepen
, and
P.
Fuoss
,
Phys. Rev. B
44
,
3702
(
1991
).
17.
M.
Reiche
,
M.
Kittler
,
R.
Scholz
,
A.
Hähnel
, and
T.
Arguirov
,
J. Phys.: Conf. Ser.
281
,
12017
(
2011
).
You do not currently have access to this content.