InGaP single-junction solar cells are grown on lattice-matched Ge-on-Si virtual substrates using metal-organic chemical vapor deposition. Optoelectronic simulation results indicate that the optimal collection length for InGaP single-junction solar cells with a carrier lifetime range of 2–5 ns is wider than approximately 1 μm. Electron beam-induced current measurements reveal that the threading dislocation density (TDD) of InGaP solar cells fabricated on Ge and Ge-on-Si substrates is in the range of 104–3 × 107 cm−2. We demonstrate that the open circuit voltage (Voc) of InGaP solar cells is not significantly influenced by TDDs less than 2 × 106 cm−2. Fabricated InGaP solar cells grown on a Ge-on-Si virtual substrate and a Ge substrate exhibit Voc in the range of 0.96 to 1.43 V under an equivalent illumination in the range of ∼0.5 Sun. The estimated efficiency of the InGaP solar cell fabricated on the Ge-on-Si virtual substrate (Ge substrate) at room temperature for the limited incident spectrum spanning the photon energy range of 1.9–2.4 eV varies from 16.6% to 34.3%.

1.
H. M.
Branz
,
W.
Regan
,
K. J.
Gerst
,
J. B.
Borak
, and
E. A.
Santoria
,
Energy Environ. Sci.
8
,
3083
3091
(
2015
).
2.
L. Z.
Broderick
,
T.
Zhang
,
M.
Stefancich
,
B. R.
Albert
,
E.
Wang
,
G.
Chen
,
P.
Armstrong
,
M.
Chiesa
,
L.
Kimerling
, and
J.
Michel
,
Mater. Res. Soc. Symp. Proc.
1493
,
31
36
(
2013
).
3.
C. L.
Andre
, “
III-V semiconductors on SiGe substrates for multi-junction photovoltaic
,” Ph.D. thesis (
The Ohio State University
,
Columbus
,
2004
).
4.
S. A.
Ringel
,
J. A.
Carlin
,
C. L.
Andre
,
M. K.
Hudait
,
M.
Gonzalez
,
D. M.
Wilt
,
E. B.
Clark
,
P.
Jenkins
,
D.
Scheiman
,
A.
Allerman
,
E. A.
Fitzerald
, and
C. W.
Leitz
,
Prog. Photovoltaics
10
,
417
426
(
2002
).
5.
M. R.
Lueck
,
C. L.
Andre
,
A. J.
Pitera
,
M. L.
Lee
,
E. A.
Fitzgerald
, and
S. A.
Ringel
,
IEEE Electron Device Lett.
27
,
142
144
(
2006
).
6.
H.-C.
Luan
,
D. R.
Lim
,
K. K.
Lee
,
K. M.
Chen
,
J. G.
Sandland
,
K.
Wafa
, and
L. C.
Kimerling
,
Appl. Phys. Lett.
75
,
2909
(
1999
).
7.
C. M.
Fetzer
,
R. T.
Lee
,
G. B.
Stringfellow
,
X. Q.
Liu
,
A.
Sasaki
, and
N.
Ohno
,
J. Appl. Phys.
91
,
199
(
2002
).
8.
T.
Takamoto
,
E.
Ikeda
,
H.
Kurita
, and
M.
Ohmori
,
Sol. Energy Mater. Sol. Cells
35
,
25
31
(
1994
).
9.
J.-Y. J.
Lin
,
A. M.
Roy
,
A.
Nainani
,
Y.
Sun
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
98
,
092113
(
2011
).
10.
C. L.
Andre
,
D. M.
Wilt
,
A. J.
Pitera
,
M. L.
Lee
,
E. A.
Fitzgerald
, and
S. A.
Ringel
,
J. Appl. Phys.
98
,
014502
(
2005
).
11.
N.
Jain
and
M. K.
Hudait
,
IEEE J. Photovoltaics
3
,
528
(
2013
).
12.
A.
Brian Ross
, “
Germanium on silicon heteroepitaxy for high efficiency photovoltaic devices
,” Ph.D. thesis (
The Massachusetts Institute of Technology
,
Cambridge
,
2016
).
13.
J. F.
Geisz
,
M. A.
Steiner
,
I.
Garcia
,
S. R.
Kurtz
, and
D. J.
Friedman
,
Appl. Phys. Lett.
103
,
041118
(
2013
).
14.
R. R.
King
,
D.
Bhusari
,
A.
Boca
,
D.
Larrabee
,
X.-Q.
Liu
,
W.
Hong
,
C. M.
Fetzer
,
D. C.
Law
, and
N. H.
Karam
,
Prog. Photovoltaics
19
,
797
(
2011
).
15.
R. R.
King
,
D. C.
Law
,
K. M.
Edmondson
,
C. M.
Fetzer
,
G. S.
Kinsey
,
H.
Yoon
,
R. A.
Sherif
, and
N. H.
Karam
,
Appl. Phys. Lett.
90
,
183516
(
2007
).
You do not currently have access to this content.