The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.

1.
D.
Zhou
,
C.
Zhao
, and
Y.
Tian
, “
Review on thermal energy storage with phase change materials (PCMS) in building applications
,”
Appl. Energy
92
,
593
(
2012
).
2.
Z.
Zhou
,
Z.
Zhang
,
J.
Zuo
,
K.
Huang
, and
L.
Zhang
, “
Phase change materials for solar thermal energy storage in residential buildings in cold climate
,”
Renewable Sustainable Energy Rev.
48
,
692
(
2015
).
3.
J.
Kosny
,
N.
Shukla
, and
A.
Fallahi
, “
Cost analysis of simple phase change material-enhanced building envelopes in southern U.S. climates
,” NREL Report, U.S. Department of Energy,
2013
.
4.
H.-B.
Yang
,
T. C.
Liu
,
J.-C.
Chern
, and
M.-H.
Lee
, “
Mechanical properties of concrete containing phase-change material
,”
J. Chin. Inst. Eng.
39
,
521
(
2016
).
5.
C.
Peng
,
L.
Wu
,
F.
Rao
,
Z.
Song
,
P.
Yang
,
H.
Song
,
K.
Ren
,
X.
Zhou
,
M.
Zhu
,
B.
Liu
, and
J.
Chu
, “
W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention
,”
Appl. Phys. Lett.
101
,
122108
(
2012
).
6.
J.
Liu
, “
A multi-scale analysis of the impact of pressure on melting of crystalline phase change material germanium telluride
,”
Appl. Phys. Lett.
105
,
173509
(
2014
).
7.
M. E.
Kiziroglou
,
A.
Elefsiniotis
,
S. W.
Wright
,
T. T.
Toh
,
P. D.
Mitcheson
,
T.
Becker
, and
E. M.
Yeatman
, “
Performance of phase change materials for heat storage thermoelectric harvesting
,”
Appl. Phys. Lett.
103
,
193902
(
2013
).
8.
F.
Pitié
,
C.
Zhao
, and
G.
Cáceres
, “
Thermo-mechanical analysis of ceramic encapsulated phase-change-material (pcm) particles
,”
Energy Environ. Sci.
4
,
2117
(
2011
).
9.
C.
Parrado
,
G.
Cáceres
,
F.
Bize
,
V.
Bubnovich
,
J.
Baeyens
,
J.
Degrève
, and
H.
Zhang
, “
Thermo-mechanical analysis of copper-encapsulated nano3-kno3c
,”
Chem. Eng. Res. Des.
93
,
224
(
2015
).
10.
M.
Ivanovic
,
M.
Svicevic
, and
S.
Savovic
, “
Numerical solution of Stefan problem with variable space grid method based on mixed finite element/finite difference approach
,”
Int. J. Numer. Method H
27
,
2682
(
2017
).
11.
S.
Savovic
and
J.
Caldwell
, “
Finite difference solution of one-dimensional Stefan problem with periodic boundary conditions
,”
Int. J. Heat Mass Transfer
46
,
2911
(
2003
).
12.
S.
Savovic
and
J.
Caldwell
, “
Numerical solution of Stefan problem with time-dependent boundary conditions by variable space grid method
,”
Therm. Sci.
13
,
165
(
2009
).
13.
D.
Mazzeo
,
G.
Oliveti
,
M. D.
Simone
, and
N.
Arcuri
, “
Analytical model for solidification and melting in a finite pcm in steady periodic regime
,”
Int. J. Heat Mass Transfer
88
,
844
(
2015
).
14.
F.
Mathieu-Potvin
and
L.
Gosselin
, “
Thermal shielding of multilayer walls with phase change materials under different transient boundary conditions
,”
Int. J. Therm. Sci.
48
,
1707
(
2009
).
15.
J. A.
Otero
,
E. M.
Hernández
,
R. D.
Santiago
,
R.
Martínez
,
F.
Castillo
, and
J. E.
Oseguera
, “
Non-parabolic interface motion for the one-dimensional Stefan problem: Neumann boundary conditions
,”
Therm. Sci.
21
,
2699
(
2017
).
16.
R. D.
Santiago
,
E. M.
Hernández
, and
J. A.
Otero
, “
Constant mass model for the liquid-solid phase transition on a one-dimensional Stefan problem: Transient and steady state regimes
,”
Int. J. Therm. Sci.
118
,
40
(
2017
).
17.
T.
Kasuya
and
N.
Shimoda
, “
Stefan problem for a finite liquid phase and its application to laser or electron beam welding
,”
J. Appl. Phys.
82
,
3672
(
1997
).
18.
V. N.
Tokarev
and
A. F. H.
Kaplan
, “
An analytical modeling of time dependent pulsed laser melting
,”
J. Appl. Phys.
86
,
2836
(
1999
).
19.
E.
Hetmaniok
,
D.
Slota
, and
A.
Zielonka
, “
Solution of the direct alloy solidification problem including the phenomenon of material shrinkage
,”
Therm. Sci.
21
,
105
(
2017
).
20.
J.
Dallaire
and
L.
Gosselin
, “
Various ways to take into account density change in solid-liquid phase change models: Formulation and consequences
,”
Int. J. Heat Mass Transfer
103
,
672
(
2016
).
21.
J.
Dallaire
and
L.
Gosselin
, “
Numerical modeling of solid-liquid phase change in a closed 2d cavity with density change, elastic wall and natural convection
,”
Int. J. Heat Mass Transfer
114
,
903
(
2017
).
22.
M.
Conti
, “
Planar solidification of a finite slab: Effects of the pressure dependence of the freezing point
,”
Int. J. Heat Mass Transfer
38
,
65
(
1995
).
23.
J.
López
,
G.
Caceres
,
E. P. D.
Barrio
, and
W.
Jomaa
, “
Confined melting in deformable porous media: A first attempt to explain the graphite/salt composites behaviour
,”
Int. J. Heat Mass Transfer
53
,
1195
(
2010
).
24.
D. R.
Burguess
, “
Thermochemical data
,” in
NIST Chemistry Webbook, NIST Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2017
).
25.
E.
Lemmon
,
M.
McLinden
, and
D.
Friend
, “
Thermophysical properties of fluid systems
,” in
Nist Chemistry Webbook, Nist Standard Reference Database Number 69
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2017
).
26.
E. M.
Hernández
,
J. A.
Otero
,
R. D.
Santiago
,
R.
Martínez
,
F.
Castillo
, and
J. E.
Oseguera
, “
Non-parabolic interface motion for the one-dimensional Stefan problem: Dirichlet boundary conditions
,”
Therm. Sci
21
,
2327
(
2017
).
27.
S. L.
Mitchell
, “
An accurate nodal heat balance integral method with spatial subdivision
,”
Numer. Heat Transfer
60
,
34
(
2011
).
28.
J.
Caldwell
,
S.
Savović
, and
Y. Y.
Kwan
, “
Nodal integral and finite difference solution of one-dimensional Stefan problem
,”
J. Heat Transfer-Trans. ASME
125
,
523
(
2003
).
You do not currently have access to this content.