Newly emerged materials from the family of Heuslers and complex oxides exhibit finite bandgaps and ferromagnetic behavior with Curie temperatures much higher than even room temperature. In this work, using the semiclassical top-of-the-barrier FET model, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts. Such a device could retain the spin polarization of injected electrons in the channel, the loss of which limits the operation of traditional spin transistors with non-ferromagnetic channels. We examine the operation of four material systems that are currently considered some of the most prominent known ferromagnetic semiconductors: three Heusler-type alloys (Mn2CoAl, CrVZrAl, and CoVZrAl) and one from the oxide family (NiFe2O4). We describe their band structures by using data from DFT (Density Functional Theory) calculations. We investigate under which conditions high spin polarization and significant ION/IOFF ratio, two essential requirements for the spin-MOSFET operation, are both achieved. We show that these particular Heusler channels, in their bulk form, do not have adequate bandgap to provide high ION/IOFF ratios and have small magnetoconductance compared to state-of-the-art devices. However, with confinement into ultra-narrow sizes down to a few nanometers, and by engineering their spin dependent contact resistances, they could prove promising channel materials for the realization of spin-MOSFET transistor devices that offer combined logic and memory functionalities. Although the main compounds of interest in this paper are Mn2CoAl, CrVZrAl, CoVZrAl, and NiFe2O4 alone, we expect that the insight we provide is relevant to other classes of such materials as well.

1.
International Technology Roadmap for Semiconductors 2.0 - Beyond CMOS,
2015
.
2.
S.
Datta
and
B.
Das
,
Appl. Phys. Lett.
56
,
665
(
1990
).
3.
S.
Sugahara
and
M.
Tanaka
,
Appl. Phys. Lett.
84
,
2307
(
2004
).
4.
T.
Tanamoto
,
H.
Sugiyama
,
T.
Inokuchi
,
T.
Marukame
,
M.
Ishikawa
,
K.
Ikegami
, and
Y.
Saito
,
J. Appl. Phys.
109
,
07C312
(
2011
).
5.
T.
Inokuchi
,
T.
Marukame
,
T.
Tanamoto
,
H.
Sugiyama
,
M.
Ishikawa
, and
Y.
Saito
, in
2010 Symposium on VLSI Technology
(
2010
), p.
119
.
6.
T.
Marukame
,
T.
Inokuchi
,
M.
Ishikawa
,
H.
Sugiyama
, and
Y.
Saito
, in
2009 IEEE International Electron Devices Meeting (IEDM)
(
2009
), pp.
1
4
.
7.
G.
Schmidt
,
D.
Ferrand
,
L. W.
Molenkamp
,
A. T.
Filip
, and
B. J.
van Wees
,
Phys. Rev. B
62
,
R4790
(
2000
).
8.
International Technology Roadmap Semiconductors 2.0 - Emerging Research Materials,
2015
.
9.
D.
Osintsev
,
V.
Sverdlov
,
A.
Makarov
, and
S.
Selberherr
, in
Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)
(
2013
), p.
762
.
10.
I.
Žutić
,
J.
Fabian
, and
S.
Das Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
11.
T.
Dietl
,
J. Appl. Phys.
103
,
07D111
(
2008
).
12.
S. J.
Pearton
,
C. R.
Abernathy
,
M. E.
Overberg
,
G. T.
Thaler
,
D. P.
Norton
,
N.
Theodoropoulou
,
A. F.
Hebard
,
Y. D.
Park
,
F.
Ren
,
J.
Kim
, and
L. A.
Boatner
,
J. Appl. Phys.
93
,
1
(
2003
).
13.
International Technology Roadmap Semiconductors - Emerging Research Devices,
2013
.
14.
I.
Galanakis
,
K.
Özdoğan
, and
E.
Şaşıoğlu
,
Appl. Phys. Lett.
103
,
142404
(
2013
).
15.
M. E.
Jamer
,
B. A.
Assaf
,
T.
Devakul
, and
D.
Heiman
,
Appl. Phys. Lett.
103
,
142403
(
2013
).
16.
M. E.
Jamer
,
G. E.
Sterbinsky
,
G. M.
Stephen
,
M. C.
DeCapua
,
G.
Player
, and
D.
Heiman
,
Appl. Phys. Lett.
109
,
182402
(
2016
).
17.
S.
Ouardi
,
G. H.
Fecher
,
C.
Felser
, and
J.
Kübler
,
Phys. Rev. Lett.
110
,
100401
(
2013
).
18.
M.
Tas
,
E.
Şaşıoğlu
,
C.
Friedrich
, and
I.
Galanakis
,
J. Magn. Magn. Mater.
441
,
333
(
2017
).
19.
M.
Meinert
and
G.
Reiss
,
J. Phys.: Condens. Matter
26
,
115503
(
2014
).
20.
Z.
Szotek
,
W. M.
Temmerman
,
D.
Ködderitzsch
,
A.
Svane
,
L.
Petit
, and
H.
Winter
,
Phys. Rev. B
74
,
174431
(
2006
).
21.
S.
Sugahara
and
M.
Tanaka
,
J. Appl. Phys.
97
,
10D503
(
2005
).
22.
A.
Rahman
,
J.
Wang
,
J.
Guo
,
M. S.
Hasan
,
Y.
Liu
,
A.
Matsudaira
,
S. S.
Ahmed
,
S.
Datta
, and
M.
Lundstrom
, see https://nanohub.org/resources/fettoy for nanoHUB (
2015
).
23.
N.
Neophytou
,
A.
Paul
, and
G.
Klimeck
,
IEEE Trans. Nanotechnol.
7
,
710
(
2008
).
24.
N.
Neophytou
,
A.
Paul
,
M. S.
Lundstrom
, and
G.
Klimeck
,
IEEE Trans. Electron Devices
55
,
1286
(
2008
).
25.
A.
Rahman
,
G.
Jing
,
S.
Datta
, and
M. S.
Lundstrom
,
IEEE Trans. Electron Devices
50
,
1853
(
2003
).
26.
M.
Lundstrom
,
Fundamentals of Carrier Transport
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2000
).
27.
In the case of the oxide NiFe2O4, where the real unit cell contains a certain disorder due to the random occupation of the octahedral sites around the oxygen by Fe and Ni, the disorder was removed in the DFT calculations lowering the unit cell symmetry and causing the Γ-X direction to be splitted in Γ-R and Γ-T.19 In the real material, these electron dispersions will smear out and form states between the Γ–R and Γ–T that constitute the dispersion along Γ–X direction.19 The Γ–R and Γ–T correspond to the [101] and [110] directions, respectively, which are perpendicular when the reduced symmetry cell conserves equal lattice parameters (a = b = c).
28.
N.
Neophytou
,
T.
Rakshit
, and
M. S.
Lundstrom
,
IEEE Trans. Electron Devices
56
,
1377
(
2009
).
29.
CHIPS 2020
, edited by
B.
Hoefflinger
(
Springer International Publishing
,
2016
), Vol.
2
.
30.
T.
Graf
,
C.
Felser
, and
S. S. P.
Parkin
,
Prog. Solid State Chem.
39
,
1
(
2011
).
31.
L.
Wollmann
,
A. K.
Nayak
,
S. S. P.
Parkin
, and
C.
Felser
,
Annu. Rev. Mater. Res.
47
,
247
(
2017
).
32.
J.
Wang
,
A.
Rahman
,
A.
Ghosh
,
G.
Klimeck
, and
M.
Lundstrom
,
Appl. Phys. Lett.
86
,
093113
(
2005
).
33.
M.
Jourdan
,
J.
Minár
,
J.
Braun
,
A.
Kronenberg
,
S.
Chadov
,
B.
Balke
,
A.
Gloskovskii
,
M.
Kolbe
,
H. J.
Elmers
,
G.
Schönhense
,
H.
Ebert
,
C.
Felser
, and
M.
Kläui
,
Nature Commun.
5
,
3974
(
2014
).
34.
W. H.
Wang
,
M.
Przybylski
,
W.
Kuch
,
L. I.
Chelaru
,
J.
Wang
,
Y. F.
Lu
,
J.
Barthel
,
H. L.
Meyerheim
, and
J.
Kirschner
,
Phys. Rev. B
71
,
144416
(
2005
).
35.
L.
Bainsla
,
R.
Yilgin
,
J.
Okabayashi
,
A.
Ono
,
K.
Suzuki
, and
S.
Mizukami
,
Phys. Rev. B
96
,
094404
(
2017
).
36.
T.
Valet
and
A.
Fert
,
Phys. Rev. B
48
,
7099
(
1993
).
37.
T. M.
Nakatani
,
T.
Furubayashi
,
S.
Kasai
,
H.
Sukegawa
,
Y. K.
Takahashi
,
S.
Mitani
, and
K.
Hono
,
Appl. Phys. Lett.
96
,
212501
(
2010
).
38.
R. J.
Soulen
, Jr.
,
M. S.
Osofsky
,
B.
Nadgorny
,
T.
Ambrose
,
P.
Broussard
,
S. F.
Cheng
,
J.
Byers
,
C. T.
Tanaka
,
J.
Nowack
,
J. S.
Moodera
,
G.
Laprade
,
A.
Barry
, and
M. D.
Coey
,
J. Appl. Phys.
85
,
4589
(
1999
).
39.
J. Y.
Gu
,
S. D.
Steenwyk
,
A. C.
Reilly
,
W.
Park
,
R.
Loloee
,
J.
Bass
, and
W. P.
Pratt
, Jr.
,
J. Appl. Phys.
87
,
4831
(
2000
).
40.
S.
Picozzi
and
A. J.
Freeman
,
J. Phys.: Condens. Matter
19
,
315215
(
2007
).
41.
M.
Bibes
and
A.
Barthelemy
,
IEEE Trans. Electron Devices
54
,
1003
(
2007
).
42.
D.
Apalkov
,
B.
Dieny
, and
J. M.
Slaughter
,
Proc. IEEE
104
,
1796
(
2016
).
43.
D. D.
Djayaprawira
,
K.
Tsunekawa
,
M.
Nagai
,
H.
Maehara
,
S.
Yamagata
,
N.
Watanabe
,
S.
Yuasa
,
Y.
Suzuki
, and
K.
Ando
,
Appl. Phys. Lett.
86
,
092502
(
2005
).
44.
M.
Takao
,
K.
Takashi
,
M.
Ken-ichi
,
U.
Tetsuya
, and
Y.
Masafumi
,
Jpn. J. Appl. Phys., Part 1
44
,
L521
(
2005
).
45.
B.
Dieny
,
B. A.
Gurney
,
S. E.
Lambert
,
D.
Mauri
,
S. S. P.
Parkin
,
V. S.
Speriosu
, and
D. R.
Wilhoit
, U.S. patent 5206590 A (
1993
).
46.
B.
Dieny
,
V. S.
Speriosu
,
S. S. P.
Parkin
,
B. A.
Gurney
,
D. R.
Wilhoit
, and
D.
Mauri
,
Phys. Rev. B
43
,
1297
(
1991
).
47.
D. E.
Heim
and
S. S. P.
Parkin
, U.S. patent 5465185 A (
1995
).
48.
K.
Ando
,
S.
Fujita
,
J.
Ito
,
S.
Yuasa
,
Y.
Suzuki
,
Y.
Nakatani
,
T.
Miyazaki
, and
H.
Yoda
,
J. Appl. Phys.
115
,
172607
(
2014
).
49.
T.
Nobuki
,
I.
Naomichi
,
S.
Satoshi
, and
I.
Koichiro
,
Jpn. J. Appl. Phys., Part 1
46
,
L454
(
2007
).
50.
J. M. D.
Coey
,
Magnetism and Magnetic Materials
(
Cambridge University Press
,
2011
).
51.
J. M. D.
Teresa
,
A.
Barthélémy
,
A.
Fert
,
J. P.
Contour
,
R.
Lyonnet
,
F.
Montaigne
,
P.
Seneor
, and
A.
Vaurès
,
Phys. Rev. Lett.
82
,
4288
(
1999
).
52.
X.
Wang
,
Z.
Cheng
,
G.
Liu
,
X.
Dai
,
R.
Khenata
,
L.
Wang
, and
A.
Bouhemadou
,
IUCrJ
4
,
758
(
2017
).
53.
Y. J.
Zhang
,
Z. H.
Liu
,
G. D.
Liu
,
X. Q.
Ma
, and
Z. X.
Cheng
,
J. Magn. Magn. Mater.
449
,
515
(
2018
).
54.
M.
Tas
,
E.
Şaşıoğlu
,
C.
Friedrich
,
S.
Blügel
, and
I.
Galanakis
,
J. Appl. Phys.
121
,
053903
(
2017
).
55.
I.
Khan
,
A.
Hashmi
,
M. U.
Farooq
, and
J.
Hong
,
ACS Appl. Mater. Interfaces
9
,
35368
(
2017
).
56.
J.
Ma
,
J.
He
,
D.
Mazumdar
,
K.
Munira
,
S.
Keshavarz
,
T.
Lovorn
,
C.
Wolverton
,
A. W.
Ghosh
, and
W. H.
Butler
, e-print arXiv:1712.02278v1.
57.
J.
Ma
,
V. I.
Hegde
,
K.
Munira
,
Y.
Xie
,
S.
Keshavarz
,
D. T.
Mildebrath
,
C.
Wolverton
,
A. W.
Ghosh
, and
W. H.
Butler
,
Phys. Rev. B
95
,
024411
(
2017
).
58.
G. M.
Stephen
,
I.
McDonald
,
B.
Lejeune
,
L. H.
Lewis
, and
D.
Heiman
,
Appl. Phys. Lett.
109
,
242401
(
2016
).
59.
G. M.
Stephen
,
G.
Buda
,
M.
Jamer
,
C.
Lane
,
S.
Kaprzyk
,
B.
Barbiellini
,
A.
Bansil
,
L. H.
Lewis
, and
D.
Heiman
, “
Electronic and magnetic properties of CrVTiAl room temperature spin filter films
,” presented at
the APS March Meeting 2018
, 5–9 March
2018
, Los Angeles, CA, Abstract No. P21.00005.
You do not currently have access to this content.