Lanthanum strontium cobalt ferrite La1-xSrxCo1-yFeyO3-δ (LSCF) is one of the most studied mixed ionic-electronic conductor materials due to electrical and transport properties, which are attractive for intermediate temperature solid oxide fuel cells (SOFCs), oxygen permeation membranes, and catalysis. The integration of such materials, however, depends on the thermal as well as mechanical behavior. LSCF exhibits nonlinear hysteresis during compressive stress-strain measurements, marked by a remanent strain and coercive stress, i.e., ferroelasticity. However, the origin of ferroelastic behavior has not been investigated under high compressive stress. This study, therefore, investigates the microscopic origin of stress-induced mechanical behavior in polycrystalline (La0.6Sr0.4)0.95Co0.2Fe0.8O3-δ using in situ synchrotron x-ray diffraction. The data presented here reveals that the strain response originates from the intrinsic lattice strain as well as the extrinsic domain switching strain without any apparent change in crystallographic symmetry. A comparison of the calculated microscopic strain contribution with that of a macroscopic measurement indicates a significant change in the relative contributions of intrinsic and extrinsic strain depending on the applied stress state, i.e., under maximum stress and after unloading. Direct evidence of the microscopic origin of stress-strain response outlined in this paper may assist in guiding materials design with the improved mechanical reliability of SOFCs.

1.
T.
Yasutake
,
Z.
Hua-Min
,
F.
Shoichi
, and
Y.
Noboru
,
Chem. Lett.
14
,
1743
(
1985
).
2.
Y.
Teraoka
,
H. M.
Zhang
,
K.
Okamoto
, and
N.
Yamazoe
,
Mater. Res. Bull.
23
,
51
(
1988
).
3.
A.
Jun
,
S.
Yoo
,
O-h.
Gwon
,
J.
Shin
, and
G.
Kim
,
Electrochim. Acta
89
,
372
(
2013
).
4.
A.
Petric
,
P.
Huang
, and
F.
Tietz
,
Solid State Ionics
135
,
719
(
2000
).
5.
L. W.
Tai
,
M. M.
Nasrallah
,
H. U.
Anderson
,
D. M.
Sparlin
, and
S. R.
Sehlin
,
Solid State Ionics
76
,
273
(
1995
).
6.
L.
Blum
,
L. G. J.
de Haart
,
J.
Malzbender
,
N. H.
Menzler
,
J.
Remmel
, and
R.
Steinberger-Wilckens
,
J. Power Sources
241
,
477
(
2013
).
7.
W.
Araki
and
J.
Malzbender
,
J. Eur. Ceram. Soc.
33
,
805
(
2013
).
8.
B. X.
Huang
,
J.
Malzbender
,
R. W.
Steinbrech
, and
L.
Singheiser
,
Solid State Ionics
180
,
241
(
2009
).
9.
B. X.
Huang
,
J.
Malzbender
,
R. W.
Steinbrech
,
E.
Wessel
,
H. J.
Penkalla
, and
L.
Singheiser
,
J. Membr. Sci.
349
,
183
(
2010
).
10.
B. X.
Huang
,
R. W.
Steinbrech
,
S.
Baumann
, and
J.
Malzbender
,
Acta Mater.
60
,
2479
(
2012
).
11.
W.
Araki
and
Y.
Arai
,
Solid State Ionics
181
,
1534
(
2010
).
12.
W.
Araki
and
Y.
Arai
,
Solid State Ionics
181
,
441
(
2010
).
13.
W.
Araki
,
Y.
Imai
, and
T.
Adachi
,
J. Eur. Ceram. Soc.
29
,
2275
(
2009
).
14.
W.
Araki
,
M.
Kuribara
, and
Y.
Arai
,
Solid State Ionics
193
,
5
(
2011
).
15.
B. X.
Huang
,
R. W.
Steinbrech
, and
J.
Malzbender
,
Solid State Ionics
228
,
32
(
2012
).
16.
M.
Lugovy
,
V.
Slyunyayev
,
N.
Orlovskaya
,
D.
Verbylo
, and
M. J.
Reece
,
Phys. Rev. B
78
,
024107
(
2008
).
17.
N.
Orlovskaya
,
N.
Browning
, and
A.
Nicholls
,
Acta Mater.
51
,
5063
(
2003
).
18.
A.
Fossdal
,
M. A.
Einarsrud
, and
T.
Grande
,
J. Eur. Ceram. Soc.
25
,
927
(
2005
).
19.
N.
Orlovskaya
,
H.
Anderson
,
M.
Brodnikovskyy
,
M.
Lugovy
, and
M. J.
Reece
,
J. Appl. Phys.
100
,
026102
(
2006
).
20.
M.
Herklotz
,
F.
Scheiba
,
M.
Hinterstein
,
K.
Nikolowski
,
M.
Knapp
,
A.-C.
Dippel
,
L.
Giebeler
,
J.
Eckert
, and
H.
Ehrenberg
,
J. Appl. Crystallogr.
46
,
1117
(
2013
).
21.
A.-C.
Dippel
,
H.-P.
Liermann
,
J. T.
Delitz
,
P.
Walter
,
H.
Schulte-Schrepping
,
O. H.
Seeck
, and
H.
Franz
,
J. Synchrotron Radiat.
22
,
675
(
2015
).
22.
P. T.
Geiger
,
O.
Clemens
,
N. H.
Khansur
,
M.
Hinterstein
,
M. G.
Sahini
,
T.
Grande
,
P.
Tung
,
J. E.
Daniels
, and
K. G.
Webber
,
Solid State Ionics
300
,
106
(
2017
).
23.
F. H.
Schader
,
Z.
Wang
,
M.
Hinterstein
,
J. E.
Daniels
, and
K. G.
Webber
,
Phys. Rev. B
93
,
134111
(
2016
).
24.
A.
Bruker
,
User's Manual
(
Bruker AXS
,
Karlsruhe, Germany
,
2014
).
25.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
4614
(
2009
).
26.
S.
Giddey
,
A.
Kulkarni
,
C.
Munnings
, and
S. P. S.
Badwal
,
Energy
68
,
538
(
2014
).
27.
K. G.
Webber
,
Y.
Zhang
,
W.
Jo
,
J. E.
Daniels
, and
J.
Rodel
,
J. Appl. Phys.
108
,
014101
(
2010
).
28.
Y.-S.
Chou
,
J. W.
Stevenson
,
T. R.
Armstrong
, and
L. R.
Pederson
,
J. Am. Ceram. Soc.
83
,
1457
(
2000
).
29.
D.
Zhou
and
M.
Kamlah
,
Acta Mater.
54
,
1389
(
2006
).
30.
N. H.
Khansur
,
T.
Rojac
,
D.
Damjanovic
,
C.
Reinhard
,
K. G.
Webber
,
J. A.
Kimpton
, and
J. E.
Daniels
,
J. Am. Ceram. Soc.
98
,
3884
(
2015
).
31.
32.
A.
Pramanick
,
D.
Damjanovic
,
J. E.
Daniels
,
J. C.
Nino
, and
J. L.
Jones
,
J. Am. Ceram. Soc.
94
,
293
(
2011
).
33.
C. M.
Landis
,
J. Mech. Phys. Solids
51
,
1347
(
2003
).
34.
M.
Vögler
,
M.
Acosta
,
D. R. J.
Brandt
,
L.
Molina-Luna
, and
K. G.
Webber
,
Eng. Fracture Mech.
144
,
68
(
2015
).
35.
J. L.
Jones
,
M.
Hoffman
, and
K. J.
Bowman
,
J. Appl. Phys.
98
,
024115
(
2005
).
36.
Y.-H.
Seo
,
M.
Vögler
,
D.
Isaia
,
E.
Aulbach
,
J.
Rödel
, and
K. G.
Webber
,
Acta Mater.
61
,
6418
(
2013
).
37.
G. A.
Schneider
,
Annu. Rev. Mater. Res.
37
,
491
(
2007
).
38.
A. B.
Kounga Njiwa
,
E.
Aulbach
,
J.
Rödel
,
S. L.
Turner
,
T. P.
Comyn
, and
A. J.
Bell
,
J. Am. Ceram. Soc.
89
,
1761
(
2006
).
You do not currently have access to this content.