The goal of this study was to establish conditions under which a magnetic-field-tunable InSb detector can be used to characterize the radiation spectrum of terahertz (THz) sources. The response of a bulk InSb detector to a monochromatic radiation with the frequency 0.1 < f < 4.6 THz was studied at liquid helium temperatures and magnetic fields B up to 5 T. A constant voltage (measurements of photocurrent) or a constant current (measurements of photoresistance) biasing condition was tested, and both signals were found to be strongly influenced by magnetoresistance of the detector. At f0.5 THz, a photoresponse was observed in the whole range of B, which reflected a non-resonant absorption by free electrons and had no relation to cyclotron-resonance-related transitions. Resonant transitions developed gradually at f0.5 THz and dominated the spectra only at f1.0 THz. Thus, we show that only at this latter frequency range, the detector can be used for a spectral characterization of unknown sources. To avoid false interpretation of measured signals, a detector should be supplied with a 1-THz high-pass filter.

1.
R. G.
Breckenridge
,
R. F.
Blunt
,
W. R.
Hosler
,
H. P. R.
Frederikse
,
J. H.
Becker
, and
W.
Oshinsky
, “
Electrical and optical properties of intermetallic compounds. I. Indium antimonide
,”
Phys. Rev.
96
,
571
(
1954
).
2.
D. G.
Avery
,
D. W.
Goodwin
,
W. D.
Lawson
, and
T.
Moss
, “
Optical and photo-electrical properties of indium antimonide
,”
Proc. Phys. Soc. B
67
,
761
(
1954
).
3.
E.
Burnstein
, “
Anomalous optical absorption limit in InSb
,”
Phys. Rev.
93
,
632
(
1954
).
4.
T. S.
Moss
, “
The interpretation of the properties of indium antimonide
,”
Proc. Phys. Soc. B
67
,
775
(
1954
).
5.
M. A.
Kinch
and
B. V.
Rollin
, “
Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor
,”
Br. J. Appl. Phys.
14
,
672
(
1963
).
6.
E. H.
Putley
, “
Indium antimonide submillimeter photoconductive detectors
,”
Appl. Opt.
4
,
649
(
1965
).
7.
R.
Cano
and
M.
Mattioli
, “
Far-infrared spectroscopy with a Michelson interferometer and an InSb detector
,”
Infrared Phys.
7
,
25
(
1967
).
8.
Landau Level Spectroscopy
, Modern Problems in Condensed Matter Science Vol.
27
, edited by
G.
Landwehr
and
E. I.
Rashba
(
North-Holland
,
1991
).
9.
G. D.
Bogomolov
,
V. V.
Zav'yalov
,
E. A.
Zotova
, and
E. Y.
Shamparov
, “
A fast tunable detector of submillimeter waves on cyclotron resonance in an InSb crystal
,”
Instrum. Exp. Tech.
45
,
78
(
2002
).
10.
Y. B.
Vasilyev
,
A. A.
Usikova
,
N. D.
Il'inskaya
,
P. V.
Petrov
, and
Y. L.
Ivanov
, “
Highly sensitive submillimeter InSb photodetectors
,”
Semiconductors
42
,
1234
(
2008
).
11.
X. P.
Gao
,
J. Y.
Sohn
, and
S. A.
Crooker
, “
Low temperature terahertz spectroscopy of n-InSb through a magnetic field driven metal-insulator transition
,”
Appl. Phys. Lett.
89
,
122108
(
2006
).
12.
J.
Chochol
,
K.
Postava
,
M.
Čada
,
M.
Vanwolleghem
,
L.
Halagačka
,
J.-F.
Lampin
, and
J.
Pištora
, “
Magneto-optical properties of InSb for THz applications
,”
AIP Adv.
6
,
115021
(
2016
).
13.
L.
Deng
,
J.
Teng
,
H.
Liu
,
Q. Y.
Wu
,
J.
Tang
,
X.
Zhang
,
S. A.
Maier
,
K. P.
Lim
,
C. Y.
Ngo
,
S. F.
Yoon
, and
S. J.
Chua
, “
Direct optical tuning of the terahertz plasmonic response of InSb subwavelength gratings
,”
Adv. Opt. Mater.
1
,
128
(
2013
).
14.
J.
Cong
,
B.
Yun
, and
Y.
Cui
, “
The ratio of the kinetic inductance to the geometric inductance: A key parameter for the frequency tuning of the THz semiconductor split-ring resonator
,”
Opt. Express
21
,
20363
(
2013
).
15.
W.
Gu
,
S.
Chang
,
F.
Fan
,
N.
Zhang
, and
X.
Zhang
, “
InSb-based tunable terahertz directional beaming device
,”
Opt. Commun.
377
,
110
(
2016
).
16.
P.
Kwiecien
,
I.
Richter
,
V.
Kuzmiak
, and
J.
Čtyroký
, “
Nonreciprocal waveguiding structures for THz region based on InSb
,”
J. Opt. Soc. Am. A
34
,
892
(
2017
).
17.
E. M.
Gershenzon
,
V. A.
Il'in
,
L. B.
Litvak-Gorskaya
, and
S. R.
Filonovich
, “
Character of submillimeter photoconductivity in n-InSb
,”
Sov. Phys. JETP
49
,
121
(
1979
), available at www.jetp.ac.ru/cgi-bin/dn/e_049_01_0121.pdf.
18.
G.
Strasser
,
K.
Bochter
,
M.
Witzany
, and
E.
Gornik
, “
Improved tunable InSb FIR detectors
,”
Infrared Phys.
32
,
439
(
1991
).
19.
W.
Knap
,
D.
Dur
,
A.
Raymond
,
C.
Meny
,
J.
Leotin
,
S.
Huant
, and
B.
Etienne
, “
A far-infrared spectrometer based on cyclotron resonance emission sources
,”
Rev. Sci. Instrum.
63
,
3293
(
1992
).
20.
L. H.
Dmowski
,
M.
Cheremisin
,
C.
Skierbiszewski
, and
W.
Knap
, “
Far-infrared narrow-band photodetector based on magnetically tunable cyclotron resonance-assisted transitions in pure n-type InSb
,” in
Proceedings of the 26th International School of Semiconducting Compounds, Jaszowiec, Poland 1997
L. H.
Dmowski
,
M.
Cheremisin
,
C.
Skierbiszewski
, and
W.
Knap
,[
Acta Phys. Pol.
92
,
733
(
1997
)].
21.
This comparison of time is a result of a personal experience of the authors.
22.
W.
Knap
,
J.
Łusakowski
,
T.
Parenty
,
S.
Bollaert
,
A.
Cappy
,
V. V.
Popov
, and
M. S.
Shur
, “
Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors
,”
Appl. Phys. Lett.
84
,
2331
(
2004
).
23.
J.
Łusakowski
,
W.
Knap
,
N.
Dyakonova
,
L.
Varani
,
J.
Mateos
,
T.
Gonzalez
,
Y.
Roelens
,
S.
Bollaert
,
A.
Cappy
, and
K.
Karpierz
, “
Voltage tunable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor
,”
J. Appl. Phys.
97
,
064307
(
2005
).
24.
N.
Dyakonova
,
F.
Teppe
,
J.
Łusakowski
,
W.
Knap
,
M.
Levinshtein
,
A. P.
Dmitriev
,
M. S.
Shur
,
S.
Bollaert
, and
A.
Cappy
, “
Magnetic field effect on the terahertz emission from nanometer InGaAs/AlInAs high electron mobility transistors
,”
J. Appl. Phys.
97
,
114313
(
2005
).
25.
M.
Dyakonov
and
M. S.
Shur
, “
Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current
,”
Phys. Rev. Lett.
71
,
2465
(
1993
).
26.
M. I.
Dyakonov
,
A. L.
Efros
, and
D. I.
Mitchell
, “
Magnetic freeze-out of electrons in extrinsic semiconductors
,”
Phys. Rev.
180
,
813
(
1969
).
27.
W. S.
Boyle
and
A. D.
Brailsford
, “
Infrared resonant absorption from bound Landau levels in InSb
,”
Phys. Rev.
107
,
903
(
1957
).
28.
R. F.
Wallis
and
H. J.
Bowlden
, “
Theory of impurity photo-ionization spectrum of semiconductors in magnetic fields
,”
J. Phys. Chem. Solids
7
,
78
(
1958
).
29.
B.
Lax
,
J. G.
Mavroides
,
H. J.
Zeiger
, and
R. J.
Keyes
, “
Cyclotron resonance in indium antimonide at high magnetic fields
,”
Phys. Rev.
122
,
31
(
1961
).
30.
R.
Kaplan
, “
Optical spectra of donor impurities in InSb in high magnetic fields
,”
Phys. Rev.
181
,
1154
(
1969
).
31.
E. J.
Johnson
and
D. H.
Dickey
, “
Infrared cyclotron resonance and related experiments in the conduction band of InSb
,”
Phys Rev. B
1
,
2676
(
1970
).
32.
J. B.
Choi
,
S.
Liu
, and
H. D.
Drew
, “
Metallic impurity band in the narrow-band-gap semiconductor n-type InSb
,”
Phys. Rev. B
43
,
4046
(
1991
).
33.
D.
Yavorskiy
,
K.
Karpierz
,
P.
Kopyt
,
M.
Grynberg
, and
J.
Łusakowski
, “
Sub-terahertz emission from field-effect transistors
,” in
Proceedings of the 46th International School and Conference on the Physics of Semiconductors “Jaszowiec” Szczyrk, Poland, 2017
D.
Yavorskiy
,
K.
Karpierz
,
P.
Kopyt
,
M.
Grynberg
, and
J.
Łusakowski
,[
Acta Phys. Pol.
132
,
335
(
2017
)].
You do not currently have access to this content.