Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgOF, because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.

1.
C. G.
Granqvist
,
Sol. Energy Mater. Sol. Cells
91
,
1529
(
2007
).
2.
J. J.
Berry
,
D. S.
Ginley
, and
P. E.
Burrows
,
Appl. Phys. Lett.
92
,
193304
(
2008
).
3.
K.
Nomura
,
H.
Ohta
,
K.
Ueda
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Science
300
,
1269
(
2003
).
4.
K.
Nomura
,
H.
Ohta
,
A.
Takagi
,
T.
Kamiya
,
M.
Hirano
, and
H.
Hosono
,
Nature
432
,
488
(
2004
).
5.
H. H.
Hsu
,
C. Y.
Chang
, and
C. H.
Cheng
,
IEEE Electron Device Lett.
34
,
768
(
2013
).
6.
R. A.
Street
,
T. N.
Ng
,
R. A.
Lujan
,
I.
Son
,
M.
Smith
,
S.
Kim
,
T.
Lee
,
Y.
Moon
, and
S.
Cho
,
ACS Appl. Mater. Interfaces
6
,
4428
(
2014
).
7.
A.
Walsh
,
J. L. F.
Da Silva
, and
S.-H.
Wei
,
Phys. Rev. B
78
,
075211
(
2008
).
8.
H.
Odaka
,
Y.
Shigesato
,
T.
Murakami
, and
S.
Iwata
,
Jpn. J. Appl. Phys., Part 1
40
,
3231
(
2001
).
9.
A.
Walsh
,
J. L. F.
Da Silva
,
S.-H.
Wei
,
C.
Körber
,
A.
Klein
,
L. F. J.
Piper
,
A.
DeMasi
,
K. E.
Smith
,
G.
Panaccione
,
P.
Torelli
,
D. J.
Payne
,
A.
Bourlange
, and
R. G.
Egdell
,
Phys. Rev. Lett.
100
,
167402
(
2008
).
10.
F. P.
Sabino
,
R.
Besse
,
L. N.
de Oliveira
,
S.-H.
Wei
, and
J. L. F.
Da Silva
,
Phys. Rev. B
92
,
205308
(
2015
).
11.
N.
Nadaud
,
N.
Lequeux
,
M.
Nanot
,
J.
Jové
, and
T.
Roisnel
,
J. Solid State Chem.
135
,
140
(
1998
).
12.
S.
Yoshioka
,
F.
Oba
,
R.
Huang
,
I.
Tanaka
,
T.
Mizoguchi
, and
T.
Yamamoto
,
J. Appl. Phys.
103
,
014309
(
2008
).
13.
J. L. F.
Da Silva
,
Y.
Yan
, and
S.-H.
Wei
,
Phys. Rev. Lett.
100
,
255501
(
2008
).
14.
A. S.
Gonçalves
,
M. R.
Davalos
,
N.
Masaki
,
S.
Yanagida
,
A.
Morandeira
,
J. R.
Durrant
,
J. N.
Freitas
, and
A. F.
Nogueira
,
Dalton Trans.
11
,
1487
(
2008
).
15.
T.
Minami
,
Thin Solid Films
516
,
5822
(
2008
).
16.
J. L. F.
Da Silva
,
A.
Walsh
, and
S.-H.
Wei
,
Phys. Rev. B
80
,
214118
(
2009
).
17.
D. H.
O'Neil
,
A.
Walsh
,
R. M. J.
Jacobs
,
V. L.
Kuznetsov
,
R. G.
Egdell
, and
P. P.
Edwards
,
Phys. Rev. B
81
,
085110
(
2010
).
18.
A.
Walsh
,
J. L. F.
Da Silva
,
Y.
Yan
,
M. M.
Al-Jassim
, and
S.-H.
Wei
,
Phys. Rev. B
79
,
073105
(
2009
).
19.
W.
Sato
,
S.
Komatsuda
,
Y.
Yamada
, and
Y.
Ohkubo
,
Phys. Rev. B
90
,
235204
(
2014
).
20.
M.
Nagasawa
and
S.
Shionoya
,
Phys. Lett.
22
,
409
(
1966
).
21.
A.
Schleife
,
J. B.
Varley
,
F.
Fuchs
,
C.
Rödl
,
F.
Bechstedt
,
P.
Rinke
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
83
,
035116
(
2011
).
22.
F. P.
Sabino
,
L. N.
Oliveira
,
S.-H.
Wei
, and
J. L. F.
Da Silva
,
J. Phys.: Condens. Matter
29
,
085501
(
2017
).
23.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
24.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
26.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
27.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
28.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
29.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
30.
J. P.
Perdew
,
Int. J. Quantum Chem.
28
,
497
(
1985
).
31.
J.
Heyd
and
G. E.
Scuseria
,
J. Chem. Phys.
120
,
7274
(
2004
).
32.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
33.
J. P.
Perdew
,
W.
Yang
,
K.
Burke
,
Z.
Yang
,
E. K. U.
Gross
,
M.
Scheffler
,
G. E.
Scuseria
,
T. M.
Henderson
,
I. Y.
Zhang
,
A.
Ruzsinszky
,
H.
Peng
,
J.
Sun
,
E.
Trushin
, and
A.
Görling
,
Proc. Natl. Acad. Sci. U.S.A.
114
,
2801
(
2017
).
34.
F. P.
Sabino
,
L. N.
de Oliveira
, and
J. L. F.
Da Silva
,
Phys. Rev. B
90
,
155206
(
2014
).
35.
J. L. F.
Da Silva
,
J. Appl. Phys.
109
,
023502
(
2011
).
36.
S.-H.
Wei
and
S. B.
Zhang
,
Phys. Rev. B
63
,
045112
(
2001
).
You do not currently have access to this content.