We present the original method for fabricating a sensitive field/charge sensor based on field effect transistor (FET) with a nanowire channel that uses CMOS-compatible processes only. A FET with a kink-like silicon nanowire channel was fabricated from the inhomogeneously doped silicon on insulator wafer very close (∼100 nm) to the extremely sharp corner of a silicon chip forming local probe. The single e-beam lithographic process with a shadow deposition technique, followed by separate two reactive ion etching processes, was used to define the narrow semiconductor nanowire channel. The sensors charge sensitivity was evaluated to be in the range of 0.1–0.2 e/Hz from the analysis of their transport and noise characteristics. The proposed method provides a good opportunity for the relatively simple manufacture of a local field sensor for measuring the electrical field distribution, potential profiles, and charge dynamics for a wide range of mesoscopic objects. Diagnostic systems and devices based on such sensors can be used in various fields of physics, chemistry, material science, biology, electronics, medicine, etc.

1.
A.
Zhang
,
G.
Zheng
, and
C. M.
Lieber
,
Conclusions and Outlook. Nanowires: Building Blocks for Nanoscience and Nanotechnology
, Nanoscience and Technology (
Springer
,
Cham
,
2016
), pp.
307
310
.
2.
C. M.
Natarajan
,
M. G.
Tanner
, and
R. H.
Hadfield
, “
Superconducting nanowire single-photon detectors: Physics and applications
,”
Supercond. Sci. Technol.
25
(
6
),
063001
(
2012
).
3.
H.
Ko
,
K.
Ryu
,
H.
Park
,
C.
Park
,
D.
Jeon
,
Y. K.
Kim
,
J.
Jung
,
D. K.
Min
,
Y.
Kim
,
H. N.
Lee
,
Y.
Park
,
H.
Shin
, and
S.
Hong
, “
High-resolution field effect sensing of ferroelectric charges
,”
Nano Lett.
11
(
4
),
1428
1433
(
2011
).
4.
M. J.
Yoo
,
T. A.
Fulton
,
H. F.
Hess
,
R. L.
Willett
,
L. N.
Dunkleberger
,
R. J.
Chichester
,
L. N.
Pfeifier
, and
K. W.
West
, “
Scanning single-electron transistor microscopy: Imaging individual charges
,”
Science
276
(
5312
),
579
582
(
1997
).
5.
A. S.
Trifonov
,
D. E.
Presnov
,
I. V.
Bozhev
,
D. A.
Evplov
,
V.
Desmaris
, and
V. A.
Krupenin
, “
Non-contact scanning probe technique for electric field measurements based on nanowire field-effect transistor
,”
Ultramicroscopy
179
,
33
40
(
2017
).
6.
D.
Zhang
,
Z.
Liu
,
C.
Li
,
T.
Tang
,
X.
Liu
,
S.
Han
,
B.
Lei
, and
C.
Zhou
, “
Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices
,”
Nano Lett.
4
(
10
),
1919
1924
(
2004
).
7.
Z.
Fan
and
J. G.
Lu
, “
Gate-refreshable nanowire chemical sensors
,”
Appl. Phys. Lett.
86
(
12
),
123510
(
2005
).
8.
D. V.
Lim
,
J. M.
Simpson
,
E. A.
Kearns
, and
M.
Kramer
, “
Current and developing technologies for monitoring agents of bioterrorism and biowarfare
,”
Clin. Microbiol. Rev.
18
(
4
),
583
607
(
2005
).
9.
M.
Lee
,
K. Y.
Baik
,
M.
Noah
,
Y. K.
Kwon
,
J. O.
Lee
, and
S.
Hong
, “
Nanowire and nanotube transistors for lab-on-a-chip applications
,”
Lab Chip
9
(
16
),
2267
2280
(
2009
).
10.
N.
Clement
,
K.
Nishiguchi
,
J. F.
Dufreche
,
D.
Guerin
,
A.
Fujiwara
, and
D.
Vuillaume
, “
A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity
,”
Appl. Phys. Lett.
98
(
1
),
014104
(
2011
).
11.
B.
Tian
,
T.
Cohen-Karni
,
Q.
Qing
,
X.
Duan
,
P.
Xie
, and
C. M.
Lieber
, “
Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes
,”
Science
329
(
5993
),
830
834
(
2010
).
12.
Q.
Qing
,
Z.
Jiang
,
L.
Xu
,
R.
Gao
,
L.
Mai
, and
C. M.
Lieber
, “
Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions
,”
Nat. Nanotechnol.
9
,
142
147
(
2014
).
13.
W. C.
Maki
,
N. N.
Mishra
,
E. G.
Cameron
,
B.
Filanoski
,
S. K.
Rastogi
, and
G. K.
Maki
, “
Nanowire-transistor based ultra-sensitive DNA methylation detection
,”
Biosens. Bioelectron.
23
(
6
),
780
787
(
2008
).
14.
W.
Zhou
,
X.
Dai
, and
C. M.
Lieber
, “
Advances in nanowire bioelectronics
,”
Rep. Prog. Phys.
80
(
1
),
016701
(
2017
).
15.
G.
Presnova
,
D.
Presnov
,
V.
Krupenin
,
V.
Grigorenko
,
A.
Trifonov
,
I.
Andreeva
,
O.
Ignatenko
,
A.
Egorov
, and
M.
Rubtsova
, “
Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen
,”
Biosens. Bioelectron.
88
,
283
289
(
2017
).
16.
F.
Patolsky
,
G.
Zheng
,
O.
Hayden
,
M.
Lakadamyali
,
X.
Zhuang
, and
C. M.
Lieber
, “
Electrical detection of single viruses
,”
Proc. Natl. Acad. Sci. U.S.A.
101
(
39
),
14017
14022
(
2004
).
17.
V. P.
Popov
,
M. A.
Ilnitskii
,
E. D.
Zhanaev
,
A. V.
Myakon'kich
,
K. V.
Rudenko
, and
A. V.
Glukhov
, “
Biosensor properties of SOI nanowire transistors with a PEALD Al2O3 dielectric protective layer
,”
Semiconductors
50
(
5
),
632
638
(
2016
).
18.
K. K.
Likharev
, “
Single-electron devices and their applications
,”
Proc. IEEE
87
(
4
),
606
632
(
1999
).
19.
A. N.
Korotkov
, “
Intrinsic noise of the single-electron transistor
,”
Phys. Rev. B
49
(
15
),
10381
10392
(
1994
).
20.
R. J.
Schoelkopf
,
P.
Wahlgren
,
A. A.
Kozhevnikov
,
P.
Delsing
, and
D. E.
Prober
, “
The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer
,”
Science
280
(
5367
),
1238
1242
(
1998
).
21.
V. A.
Krupenin
,
D. E.
Presnov
,
A. B.
Zorin
, and
J.
Niemeyer
, “
A very low-noise single-electron electrometer of stacked-junction geometry
,”
Physica B
284-288
(
Part 2
),
1800
1801
(
2000
).
22.
J.
Salfi
,
I. G.
Savelyev
,
M.
Blumin
,
S. V.
Nair
, and
H. E.
Ruda
, “
Direct observation of single-charge-detection capability of nanowire field-effect transistors
,”
Nat. Nanotechnol.
5
,
737
741
(
2010
).
23.
N.
Elfstrom
,
R.
Juhasz
,
I.
Sychugov
,
T.
Engfeldt
,
A. E.
Karlstrom
, and
J.
Linnros
, “
Surface charge sensitivity of silicon nanowires: Size dependence
,”
Nano Lett.
7
(
9
),
2608
2612
(
2007
).
24.
S. M.
Koo
,
M. D.
Edelstein
,
Q.
Li
,
C. A.
Richter
, and
E. M.
Vogel
, “
Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors
,”
Nanotechnology
16
(
9
),
1482
1485
(
2005
).
25.
D. E.
Presnov
,
S. V.
Amitonov
,
P. A.
Krutitskii
,
V. V.
Kolybasova
,
I. A.
Devyatov
,
V. A.
Krupenin
, and
I. I.
Soloviev
, “
A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator
,”
Beilstein J. Nanotechnol.
4
,
330
335
(
2013
).
26.
C. Y.
Ho
,
S. H.
Chiu
,
J. J.
Ke
,
K. T.
Tsai
,
Y. A.
Dai
,
J. H.
Hsu
,
M. L.
Chang
, and
J. H.
He
, “
Contact behavior of focused ion beam deposited Pt on p-type Si nanowires
,”
Nanotechnology
21
(
13
),
134008
(
2010
).
27.
M.
Mongillo
,
P.
Spathis
,
G.
Katsaros
,
P.
Gentile
,
M.
Sanquer
, and
S.
De Franceschi
, “
Joule-assisted silicidation for short-channel silicon nanowire devices
,”
ACS Nano
5
(
9
),
7117
7123
(
2011
).
28.
H. T. A.
Brenning
,
S. E.
Kubatkin
,
D.
Erts
,
S. G.
Kafanov
,
T.
Bauch
, and
P.
Delsing
, “
A single electron transistor on an atomic force microscope probe
,”
Nano Lett.
6
(
5
),
937
941
(
2006
).
29.
K.
Shin
,
D. S.
Kang
,
S. H.
Lee
, and
W.
Moon
, “
A scanning microscopy technique based on capacitive coupling with a field-effect transistor integrated with the tip
,”
Ultramicroscopy
159
(
1
),
1
10
(
2015
).
30.
S. H.
Lee
,
G.
Lim
,
W.
Moon
,
H.
Shin
, and
C. W.
Kim
, “
V-shaped metal-oxide-semiconductor transistor probe with nano tip for surface electric properties
,”
Ultramicroscopy
108
(
10
),
1094
1100
(
2008
).
31.
H.
Park
,
J.
Jung
,
D. K.
Min
,
S.
Kim
,
S.
Hong
, and
H.
Shin
, “
Scanning resistive probe microscopy: Imaging ferroelectric domains
,”
Appl. Phys. Lett.
84
(
10
),
1734
1736
(
2004
).
32.
M.
Li
,
H. X.
Tang
, and
M. L.
Roukes
, “
Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications
,”
Nat. Nanotechnol.
2
,
114
120
(
2007
).
33.
S. H.
Lee
,
P. K.
Kim
,
W.
Moon
, and
G.
Lim
, “
Fabrication and characterization of 3-dimensional MOS transistor tip integrated micro cantilever
,”
Microsyst. Technol.
13
(
5
),
579
587
(
2007
).
34.
H.
Zhou
,
G.
Mills
,
B. K.
Chong
,
A.
Midha
,
L.
Donaldson
, and
J. M. R.
Weaver
, “
Recent progress in the functionalization of atomic force microscope probes using electron-beam nanolithography
,”
J. Vac. Sci. Technol., A
17
(
4
),
2233
2239
(
1999
).
35.
N. P.
Pham
,
E.
Boellaard
,
J. N.
Burghartz
, and
P. M.
Sarro
, “
Photoresist coating methods for the integration of novel 3-D RF microstructures
,”
J. Microelectromech. Syst.
13
(
3
),
491
499
(
2004
).
36.
J.
Zhang
,
C.
Con
, and
B.
Cui
, “
Electron beam lithography on irregular surfaces using an evaporated resist
,”
ACS Nano
8
(
4
),
3483
3489
(
2014
).
37.
P. S.
Kelkar
,
J.
Beauvais
,
E.
Lavalle
,
D.
Drouin
,
M.
Cloutier
,
D.
Turcotte
,
P.
Yang
,
L. K.
Mun
,
R.
Legario
,
Y.
Awad
, and
V.
Aimez
, “
Nano patterning on optical fiber and laser diode facet with dry resist
,”
J. Vac. Sci. Technol., A
22
(
3
),
743
746
(
2004
).
38.
P. S.
Dobson
,
J. M. R.
Weaver
,
D. P.
Burt
,
M. N.
Holder
,
N. R.
Wilson
,
P. R.
Unwin
, and
J. V.
Macpherson
, “
Electron beam lithographically-defined scanning electrochemical-atomic force microscopy probes: Fabrication method and application to high resolution imaging on heterogeneously active surfaces
,”
Phys. Chem. Chem. Phys.
8
(
33
),
3909
3914
(
2006
).
39.
A. R.
Champagne
,
A. J.
Couture
,
F.
Kuemmeth
, and
D. C.
Ralph
, “
Nanometer-scale scanning sensors fabricated using stencil lithography
,”
Appl. Phys. Lett.
82
(
7
),
1111
1113
(
2003
).
40.
D.
Drouin
,
J.
Beauvais
,
R.
Lemire
,
E.
Lavalle
,
R.
Gauvin
, and
M.
Caron
, “
Method for fabricating submicron silicide structures on silicon using a resistless electron beam lithography process
,”
Appl. Phys. Lett.
70
(
22
),
3020
3022
(
1997
).
41.
E.
Stern
,
J. F.
Klemic
,
D. A.
Routenberg
,
P. N.
Wyrembak
,
D. B.
Turner-Evans
,
A. D.
Hamilton
,
D. A.
La Van
,
T. M.
Fahmy
, and
M. A.
Reed
, “
Label-free immunodetection with CMOS-compatible semiconducting nanowires
,”
Nature
445
(
7127
),
519
522
(
2007
).
42.
A. A.
Shukkoora
and
S.
Karmalkarb
, “
Doping dependence of the contact resistivity of end-bonded metal contacts to thin heavily doped semiconductor nanowires
,”
J. Appl. Phys.
122
,
214501
(
2017
).
43.
J.
Appenzeller
,
J.
Knoch
,
E.
Tutuc
,
M.
Reuter
, and
S.
Guha
, “
Dual-gate silicon nanowire transistors with nickel silicide contacts
,” in
International Electron Devices Meeting (IEDM'06)
,
San Francisco, CA
,
2006
, pp.
1
4
.
44.
W. M.
Weber
,
L.
Geelhaar
,
A. P.
Graham
,
E.
Unger
,
G. S.
Duesberg
,
M.
Liebau
,
W.
Pamler
,
C.
Chze
,
H.
Riechert
,
P.
Lugli
, and
F.
Kreupl
, “
Silicon-nanowire transistors with intruded nickel-silicide contacts
,”
Nano Lett.
6
(
12
),
2660
2666
(
2006
).
45.
A.
Motayed
,
J. E.
Bonevich
,
S.
Krylyuk
,
A. V.
Davydov
,
G.
Aluri
, and
M. V.
Rao
, “
Correlation between the performance and microstructure of Ti/Al/Ti/Au ohmic contacts to p-type silicon nanowires
,”
Nanotechnology
22
(
7
),
075206
(
2011
).
46.
S. V.
Amitonov
,
D. E.
Presnov
,
V. I.
Rudakov
, and
V. A.
Krupenin
, “
Field-effect transistor with nanowire channel based on heterogeneously doped SOI
,”
Russ. Microelectron.
42
(
3
),
160
164
(
2013
).
47.
V. V.
Shorokhov
,
D. E.
Presnov
,
S. V.
Amitonov
,
Yu. A.
Pashkin
, and
V. A.
Krupenin
, “
Single-electron tunneling through an individual arsenic dopant in silicon
,”
Nanoscale
9
(
2
),
613
620
(
2017
).
48.
S. A.
Dagesyan
,
V. V.
Shorokhov
,
D. E.
Presnov
,
E. S.
Soldatov
,
A. S.
Trifonov
, and
V. A.
Krupenin
, “
Sequential reduction of the silicon single-electron transistor structure to atomic scale
,”
Nanotechnology
28
(
22
),
225304
(
2017
).
49.
K.
Rudenko
,
S.
Averkin
,
V.
Lukichev
,
A.
Orlikovsky
,
A.
Pustovit
, and
A.
Vyatkin
, “
Ultra shallow p+-n junctions in Si produced by plasma immersion ion implantation
,”
Proc. SPIE
6260
,
626003
(
2006
).
50.
S. J.
Koester
,
G.
Bazan
,
G. H.
Bernstein
, and
W.
Porod
, “
Fabrication of ultrasmall tunnel junctions by electron-beam lithography
,”
Rev. Sci. Instrum.
63
(
3
),
1918
1921
(
1992
).
You do not currently have access to this content.