We study the response of a semiconductor quantum dot-metal nanoparticle system to an external field E0cos(ωt). The borders between Fano, double peaks, weak transition, strong transition, and bistability regions of the phase diagram move considerably as one regards the multipole effects. The exciton-induced transparency is an artifact of the dipole approximation. The absorption of the nanoparticle, the population inversion of the quantum dot, the upper and lower limits of intensity where bistability occurs, the characteristic time to reach the steady state, and other features of the hybrid system change due to the multipole effects. The phase diagrams corresponding to the fields parallel and perpendicular to the axis of system are quite distinguishable. Thus, both the intensity and the polarization of the incident field can be used to control the system. In particular, the incident polarization can be used to switch on and switch off the bistable behavior. For applications such as miniaturized bistable devices and nanosensors sensitive to variations of the dielectric constant of the surrounding medium, multipole effects must be considered.

1.
J. B.
Ketterson
,
The Physics of Solids
(
Oxford University Press
,
Oxford
,
2016
).
2.
S. V.
Gaponenko
,
Introduction to Nanophotonics
(
Cambridge University Press
,
Cambridge
,
2010
).
3.
P.
Michler
,
A.
Kiraz
,
C.
Becher
,
W. V.
Schoenfeld
,
P. M.
Petroff
,
L.
Zhang
,
E.
Hu
, and
A.
Imamoğlu
,
Science
290
,
2282
(
2000
).
4.
J. M.
Taylor
,
C. M.
Marcus
, and
M. D.
Lukin
,
Phys. Rev. Lett.
90
,
206803
(
2003
).
5.
M.
Achermann
,
J. Phys. Chem. Lett.
1
,
2837
(
2010
).
6.
J.
Li
and
J. Z.
Zhang
,
Coord. Chem. Rev.
253
,
3015
(
2009
).
7.
A. V.
Malyshev
and
V. A.
Malyshev
,
Phys. Rev. B
84
,
035314
(
2011
).
8.
B. S.
Nugroho
,
V. A.
Malyshev
, and
J.
Knoester
,
Phys. Rev. B
92
,
165432
(
2015
).
9.
B. S.
Nugroho
,
A. A.
Iskandar
,
V. A.
Malyshev
, and
J.
Knoester
,
J. Chem. Phys.
139
,
014303
(
2013
).
10.
J. D.
Cox
,
M. R.
Singh
,
C. V.
Bilderling
, and
A. V.
Bragas
,
Adv. Opt. Mater.
1
,
460
(
2013
).
12.
E.
Paspalakis
,
S.
Evangelou
,
S. G.
Kosionis
, and
A. F.
Terzis
,
J. Appl. Phys.
115
,
083106
(
2014
).
13.
J. Y.
Yan
,
W.
Zhang
,
S.
Duan
, and
X. G.
Zhao
,
J. Appl. Phys.
103
,
104314
(
2008
).
14.
Z.
Lu
and
K. D.
Zhu
,
J. Phys. B: At. Mol. Opt. Phys.
41
,
185503
(
2008
).
15.
16.
D.
Zhao
,
Y.
Gu
,
J.
Wu
,
J.
Zhang
,
T.
Zhang
,
B. D.
Gerardot
, and
Q.
Gong
,
Phys. Rev. B
89
,
245433
(
2014
).
17.
18.
S. M.
Sadeghi
,
W. J.
Wing
, and
R. R.
Gutha
,
Nanotechnology
26
,
085202
(
2015
).
19.
M. A.
Antón
,
F.
Carreño
,
S.
Melle
,
O. G.
Calderón
,
E.
Cabrera-Granado
,
J.
Cox
, and
M. R.
Singh
,
Phys. Rev. B
86
,
155305
(
2012
).
20.
E.
Paspalakis
,
S.
Evangelou
, and
A. F.
Terzis
,
Phys. Rev. B
87
,
235302
(
2013
).
21.
F.
Carreño
,
M. A.
Antón
,
V.
Yannopapas
, and
E.
Paspalakis
,
Phys. Rev. A
94
,
013834
(
2016
).
22.
H.
Zhang
and
A. O.
Govorov
,
Phys. Rev. B
87
,
075410
(
2013
).
23.
K. R.
McEnery
,
M. S.
Tame
,
S. A.
Maier
, and
M. S.
Kim
,
Phys. Rev. A
89
,
013822
(
2014
).
24.
A. O.
Govorov
,
G. W.
Bryant
,
W.
Zhang
,
T.
Skeini
,
J.
Lee
,
N. A.
Kotov
,
J. M.
Slocik
, and
R. R.
Naik
,
Nano Lett.
6
,
984
(
2006
).
25.
E.
Paspalakis
,
S.
Evangelou
,
V.
Yannopapas
, and
A. F.
Terzis
,
Phys. Rev. A
88
,
053832
(
2013
).
26.
J.
Hakami
and
M. S.
Zubairy
,
Phys. Rev. A
93
,
022320
(
2016
).
27.
M.
Otten
,
R. A.
Shah
,
N. F.
Scherer
,
M.
Min
,
M.
Pelton
, and
S. K.
Gray
,
Phys. Rev. B
92
,
125432
(
2015
).
28.
W.
Zhang
,
A. O.
Govorov
, and
G. W.
Bryant
,
Phys. Rev. Lett.
97
,
146804
(
2006
).
29.
R. D.
Artuso
and
G. W.
Bryant
,
Nano Lett.
8
,
2106
(
2008
).
30.
R. D.
Artuso
and
G. W.
Bryant
,
Phys. Rev. B
82
,
195419
(
2010
).
31.
J. Y.
Yan
,
W.
Zhang
,
S.
Duan
,
X. G.
Zhao
, and
A. O.
Govorov
,
Phys. Rev. B
77
,
165301
(
2008
).
32.
A.
Hatef
,
S. M.
Sadeghi
,
É.
Boulais
, and
M.
Meunier
,
Nanotechnology
24
,
015502
(
2013
).
33.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
Wiley
,
New York
,
2007
).
You do not currently have access to this content.