Quenching processes of the self-trapped exciton luminescence were studied analyzing the shape of X-ray luminescence decay kinetics curves of SrF2 nanoparticles of different sizes. To describe the curves of luminescence decay kinetics, an equation was obtained which is based on the model which takes into account the diffusion of self-trapped excitons and which considers the case of strong surface quenching. The obtained relation was shown to describe the shape of the experimental curves of X-ray luminescence decay kinetics of SrF2 nanoparticles if their size distribution is bi-modal, i.e., a log-normal distribution about a mean size in the tens of nanometers range plus a distribution of particles larger than 130 nm. The presence of large particles is implied in this model by the single-exponential decay with time constant of 1.2 μs. From the fitting of kinetics curves using the proposed relation, the average diffusion length of self-trapped excitons in SrF2 was estimated to be (15 ± 2) nm.

1.
C.
Dujardin
,
D.
Amans
,
A.
Belsky
,
F.
Chaput
,
G.
Ledoux
, and
A.
Pillonnet
,
IEEE Trans. Nucl. Sci.
57
,
1348
(
2010
).
2.
V. V.
Vistovskyy
,
A. V.
Zhyshkovych
,
N. E.
Mitina
,
A. S.
Zaichenko
,
A. V.
Gektin
,
A. N.
Vasil'ev
, and
A. S.
Voloshinovskii
,
J. Appl. Phys.
112
,
24325
(
2012
).
3.
V. V.
Vistovskyy
,
A. V.
Zhyshkovych
,
Y. M.
Chornodolskyy
,
O. S.
Myagkota
,
A.
Gloskovskii
,
A. V.
Gektin
,
A. N.
Vasil'ev
,
P. A.
Rodnyi
, and
A. S.
Voloshinovskii
,
J. Appl. Phys.
114
,
194306
(
2013
).
4.
T. S.
Malyy
,
V. V.
Vistovskyy
,
Z. A.
Khapko
,
A. S.
Pushak
,
N. E.
Mitina
,
A. S.
Zaichenko
,
A. V.
Gektin
, and
A. S.
Voloshinovskii
,
J. Appl. Phys.
113
,
224305
(
2013
).
5.
V.
Vistovskyy
,
T.
Malyy
,
A.
Pushak
,
A.
Vas'Kiv
,
A.
Shapoval
,
N.
Mitina
,
A.
Gektin
,
A.
Zaichenko
, and
A.
Voloshinovskii
,
J. Lumin.
145
,
232
(
2014
).
6.
T.
Demkiv
,
M.
Chylii
,
V.
Vistovskyy
,
A.
Zhyshkovych
,
N.
Gloskovska
,
P.
Rodnyi
,
A.
Vasil'ev
,
A.
Gektin
, and
A.
Voloshinovskii
,
J. Lumin.
190
,
10
(
2017
).
7.
V.
Vistovskyy
,
N.
Mitina
,
A.
Shapoval
,
T.
Malyy
,
A.
Gektin
,
T.
Konstantinova
,
A.
Voloshinovskii
, and
A.
Zaichenko
,
Opt. Mater.
34
,
2066
(
2012
).
8.
G.
Stryganyuk
,
D. M.
Trots
,
A.
Voloshinovskii
,
T.
Shalapska
,
V.
Zakordonskiy
,
V.
Vistovskyy
,
M.
Pidzyrailo
, and
G.
Zimmerer
,
J. Lumin.
128
,
355
(
2008
).
9.
A. N.
Belsky
and
J. C.
Krupa
,
Displays
19
,
185
(
1999
).
10.
11.
J.
Becker
,
M.
Kirm
,
V. N.
Kolobanov
, and
V. N.
Makhov
,
Electrochem. Soc. Proc.
98–25
,
415
(
1998
).
12.
Y. M.
Aleksandrov
,
V. N.
Makhov
,
T. I.
Syrejshchikova
, and
M. N.
Yakimenko
,
Nucl. Instrum. Methods Phys. Res., Sect. A
261
,
158
(
1987
).
13.
P. A.
Rodnyi
,
N. N.
Ershov
,
N. G.
Zakharov
 et al,
Opt. Spectrosk.
53
,
89
(
1982
).
14.
G. W.
Rubloff
,
Phys. Rev. B
5
,
662
(
1972
).
15.
A. F.
Latypov
 et al, see http://www.math.nsc.ru/conference/ipmp07/abstracts/Section3/LatypovAF_rus.doc for in International Conference
Inverse and incorrect problems of mathematical physics
,” dedicated to the 75th Anniversary of Academician M. M. Lavrent'ev, 20–25 August
2007
, Novosibirsk, Russia.
You do not currently have access to this content.