The incidence of energetic laser pulses on a metal foam may lead to foam ablation. The processes occurring in the foam may differ strongly from those in a bulk metal: The absorption of laser light, energy transfer to the atomic system, heat conduction, and finally, the atomistic processes—such as melting or evaporation—may be different. In addition, novel phenomena take place, such as a reorganization of the ligament network in the foam. We study all these processes in an Au foam of average porosity 79% and an average ligament diameter of 2.5 nm, using molecular dynamics simulation. The coupling of the electronic system to the atomic system is modeled by using the electron–phonon coupling, g, and the electronic heat diffusivity, κe, as model parameters, since their actual values for foams are unknown. We show that the foam coarsens under laser irradiation. While κe governs the homogeneity of the processes, g mainly determines their time scale. The final porosity reached is independent of the value of g.

1.
C.
Wu
and
L. V.
Zhigilei
,
Appl. Phys. A
114
,
11
(
2014
).
2.
M. V.
Shugaev
,
C.
Wu
,
O.
Armbruster
,
A.
Naghilou
,
N.
Brouwer
,
D. S.
Ivanov
,
T. J.-Y.
Derrien
,
N. M.
Bulgakova
,
W.
Kautek
,
B.
Rethfeld
, and
L. V.
Zhigilei
,
MRS Bull.
41
,
960
(
2016
).
3.
B.
Rethfeld
,
D. S.
Ivanov
,
M. E.
Garcia
, and
S. I.
Anisimov
,
J. Phys. D: Appl. Phys.
50
,
193001
(
2017
).
4.
H. M.
Urbassek
, in
Handbook of Surface Science
, Dynamics Vol.
3
, edited by
E.
Hasselbrink
and
B. I.
Lundqvist
(
Elsevier
,
Amsterdam
,
2008
), Chap. 17, pp.
871
913
.
5.
C.
Schäfer
,
H. M.
Urbassek
, and
L. V.
Zhigilei
,
Phys. Rev. B
66
,
115404
(
2002
).
6.
C.
Wu
and
L. V.
Zhigilei
,
J. Phys. Chem. C
120
,
4438
(
2016
).
7.
Y.
Rosandi
and
H. M.
Urbassek
,
Appl. Surf. Sci.
307
,
142
(
2014
).
8.
J.
Biener
,
A. M.
Hodge
,
J. R.
Hayes
,
C. A.
Volkert
,
L. A.
Zepeda-Ruiz
,
A. V.
Hamza
, and
F. F.
Abraham
,
Nano Lett.
6
,
2379
(
2006
).
9.
C. J.
Ruestes
,
D.
Farkas
,
A.
Caro
, and
E. M.
Bringa
,
Acta Mater.
108
,
1
(
2016
).
10.
B.-N. D.
Ngo
,
A.
Stukowski
,
N.
Mameka
,
J.
Markmann
,
K.
Albe
, and
J.
Weissmüller
,
Acta Mater.
93
,
144
(
2015
).
11.
P. E.
Hopkins
,
P. M.
Norris
,
L. M.
Phinney
,
S. A.
Policastro
, and
R. G.
Kelly
,
J. Nanomater.
2008
,
418050
.
12.
P. E.
Hopkins
,
P. T.
Rakich
,
R. H.
Olsson
,
I. F.
El-kady
, and
L. M.
Phinney
,
Appl. Phys. Lett.
95
,
161902
(
2009
).
13.
J. L.
Hostetler
,
A. N.
Smith
,
D. M.
Czajkowsky
, and
P. M.
Norris
,
Appl. Opt.
38
,
3614
(
1999
).
14.
N.
Gunkelmann
,
Y.
Rosandi
,
C. J.
Ruestes
,
E. M.
Bringa
, and
H. M.
Urbassek
,
Comput. Mater. Sci.
119
,
27
(
2016
).
15.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
);
S.
Plimpton
See http://lammps.sandia.gov/ for access to the LAMMPS web pages.
16.
S. M.
Foiles
,
M. I.
Baskes
, and
M. S.
Daw
,
Phys. Rev. B
33
,
7983
(
1986
).
17.
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
,
Phys. Rev. B
77
,
075133
(
2008
);
Z.
Lin
,
L. V.
Zhigilei
, and
V.
Celli
, See http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/ for tabulated data of electron-phonon coupling and electron heat capacity in Au and other metals at high electron temperatures.
18.
J.
Hohlfeld
,
S.-S.
Wellershoff
,
J.
Güdde
,
U.
Conrad
,
V.
Jähnke
, and
E.
Matthias
,
Chem. Phys.
251
,
237
(
2000
).
19.
T. J.
Colla
and
H. M.
Urbassek
,
Radiat. Eff. Defects Solids
142
,
439
(
1997
).
20.
A. K.
Upadhyay
and
H. M.
Urbassek
,
J. Phys. D: Appl. Phys.
40
,
3518
(
2007
).
21.
D.
Bäuerle
,
Laser Processing and Chemistry
, 3rd ed. (
Springer
,
Berlin
,
2000
).
22.
Y.
Rosandi
and
H. M.
Urbassek
,
Appl. Phys. A
110
,
649
(
2013
).
23.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
);
A.
Stukowski
, See http://www.ovito.org/ for access to the OVITO web pages.
24.
K.
Boboridis
,
G.
Pottlacher
, and
H.
Jäger
,
Int. J. Thermophys.
20
,
1289
(
1999
).
25.
A. K.
Upadhyay
,
N. A.
Inogamov
,
B.
Rethfeld
, and
H. M.
Urbassek
,
Phys. Rev. B
78
,
045437
(
2008
).
26.
H.
Edelsbrunner
and
E. P.
Mücke
,
ACM Trans. Graphics
13
,
43
(
1994
).
28.
A.
Stukowski
,
V. V.
Bulatov
, and
A.
Arsenlis
,
Model. Simul. Mater. Sci. Eng.
20
,
085007
(
2012
).
29.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
20
,
045021
(
2012
).
30.
A.
Stukowski
and
A.
Arsenlis
,
Model. Simul. Mater. Sci. Eng.
20
,
035012
(
2012
).
31.
L. V.
Zhigilei
,
Z.
Lin
, and
D. S.
Ivanov
,
J. Phys. Chem. C
113
,
11892
(
2009
).
32.
Y.
He
,
D.
Donadio
,
J.-H.
Lee
,
J. C.
Grossman
, and
G.
Galli
,
ACS Nano
5
,
1839
(
2011
).
33.
G. S.
Khara
,
S. T.
Murphy
,
S. L.
Daraszewicz
, and
D. M.
Duffy
,
J. Phys.: Condens. Matter
28
,
395201
(
2016
).
You do not currently have access to this content.