A thermodynamic model is derived to study the void nucleation in ideal lattices under hydrostatic tension loading and predicts that the plasticity has to be initiated before homogeneous nucleation of voids. Molecular dynamics simulations are performed to evaluate the mechanical behavior of Ni specimens with and without hydrogen charged. The results show that in both cases dislocations are generated before the nucleation of voids, and the insertion of hydrogen atoms does not alter the void nucleation significantly. The fact that the mechanical property is not sensitive on hydrogen is attributed to the formation of an amorphous shell around the voids.

1.
J.
Marian
,
J.
Knap
, and
M.
Ortiz
,
Phys. Rev. Lett.
93
,
165503
(
2004
).
2.
N. A.
Fleck
,
J. W.
Hutchinson
, and
V.
Tvergaard
,
J. Mech. Phys. Solids
37
,
515
540
(
1989
).
3.
V.
Tvergaard
,
J. Mech. Phys. Solids
35
,
43
60
(
1987
).
4.
V.
Tvergaard
,
J. Mech. Phys. Solids
44
,
1237
1253
(
1996
).
5.
Y.
Huang
,
J. W.
Hutchinson
, and
V.
Tvergaard
,
J. Mech. Phys. Solids
39
,
223
241
(
1991
).
6.
T.
Neeraj
,
R.
Srinivasan
, and
J.
Li
,
Acta Mater.
60
,
5160
5171
(
2012
).
7.
J. R.
Rice
and
D. M.
Tracey
,
J. Mech. Phys. Solids
17
,
201
217
(
1969
).
8.
A.
Needleman
,
V.
Tvergaard
, and
J. W.
Hutchinson
, “
Void growth in plastic solids
,” in
Topics in Fracture and Fatigue
, edited by
A. S.
Argon
(
Springer
,
New York, NY
,
1992
), pp.
145
-
178
.
9.
A. L.
Gurson
,
J. Eng. Mater. Technol.
99
,
2
(
1977
).
10.
G.
Rousselier
,
Nucl. Eng. Des.
105
,
97
111
(
1987
).
11.
C. W.
Mi
,
D. A.
Buttry
,
P.
Sharma
, and
D. A.
Kouris
,
J. Mech. Phys. Solids
59
,
1858
1871
(
2011
).
12.
S.
Traiviratana
,
E. M.
Bringa
,
D. J.
Benson
, and
M. A.
Meyers
,
Acta Mater.
56
,
3874
3886
(
2008
).
13.
J.
Marian
,
J.
Knap
, and
M.
Ortiz
,
Acta Mater.
53
,
2893
2900
(
2005
).
14.
K.
Zhao
,
I. G.
Ringdalen
,
J. Y.
Wu
,
J. Y.
He
, and
Z. L.
Zhang
,
Comput. Mater. Sci.
125
,
36
50
(
2016
).
15.
Y.
Tang
,
E. M.
Bringa
, and
M. A.
Meyers
,
Acta Mater.
60
,
4856
4865
(
2012
).
16.
E. M.
Bringa
,
S.
Traiviratana
, and
M. A.
Meyers
,
Acta Mater.
58
,
4458
4477
(
2010
).
17.
V. A.
Lubarda
,
M. S.
Schneider
,
D. H.
Kalantar
,
B. A.
Remington
, and
M. A.
Meyers
,
Acta Mater.
52
,
1397
1408
(
2004
).
18.
T. P.
Remington
,
B. A.
Remington
,
E. N.
Hahn
, and
M. A.
Meyersa
,
Mater. Sci. Eng. A
688
,
429
458
(
2017
).
19.
E. T.
Seppälä
,
J.
Belak
, and
R. E.
Rudd
,
Phys. Rev. Lett.
93
,
245503
(
2004
).
20.
E. T.
Seppala
,
J.
Belak
, and
R. E.
Rudd
,
Phys. Rev. B
69
,
134101
(
2004
).
21.
D.
Farkas
,
S.
Van Petegem
,
P. M.
Derlet
, and
H.
Van Swygenhoven
,
Acta Mater.
53
,
3115
3123
(
2005
).
22.
P.
Shewmon
and
P.
Anderson
,
Acta Mater.
46
,
4861
4872
(
1998
).
23.
A.
Needleman
,
J. Appl. Mech.
54
,
525
531
(
1987
).
24.
H. G. F.
Wilsdorf
,
Mater. Sci. Eng.
59
,
1
39
(
1983
).
25.
M.
Nagumo
,
Mater. Sci. Technol.
20
,
940
950
(
2004
).
27.
Y.
Cai
,
J. Y.
Huang
,
H. A.
Wu
,
M. H.
Zhu
,
W. A.
Goddard
, and
S. N.
Luo
,
J. Phys. Chem. Lett.
7
,
806
810
(
2016
).
28.
P.
Guan
,
S.
Lu
,
M. J. B.
Spector
,
P. K.
Valavala
, and
M. L.
Falk
,
Phys. Rev. Lett.
110
,
185502
(
2013
).
29.
D. W.
Nicholson
,
Acta Mech.
34
,
263
266
(
1979
).
30.
V. I.
Levitas
and
N. S.
Altukhova
,
Acta Mater.
59
,
7051
7059
(
2011
).
31.
Y.
Cai
,
H. A.
Wu
, and
S. N.
Luo
,
J. Chem. Phys.
140
,
214317
(
2014
).
32.
R. C.
Tolman
,
J. Chem. Phys.
17
,
333
337
(
1949
).
33.
Q.
An
,
G.
Garrett
,
K.
Samwer
,
Y.
Liu
,
S. V.
Zybin
,
S.-N.
Luo
,
M. D.
Demetriou
,
W. L.
Johnson
, and
W. A.
Goddard
,
J. Phys. Chem. Lett.
2
,
1320
1323
(
2011
).
34.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
19
(
1995
).
35.
J. E.
Angelo
,
N. R.
Moody
, and
M. I.
Baskes
,
Modell. Simul. Mater. Sci. Eng.
3
,
289
(
1995
).
36.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press
,
San Diego
,
2002
), pp.
111
-
137
.
37.
M. Q.
Chandler
,
M. F.
Horstemeyer
,
M. I.
Baskes
,
P. M.
Gullett
,
G. J.
Wagner
, and
B.
Jelinek
,
Acta Mater.
56
,
95
104
(
2008
).
38.
M. Q.
Chandler
,
M. F.
Horstemeyer
,
M. I.
Baskes
,
G. J.
Wagner
,
P. M.
Gullett
, and
B.
Jelinek
,
Acta Mater.
56
,
619
631
(
2008
).
39.
D. E.
Jiang
and
E. A.
Carter
,
Acta Mater.
52
,
4801
4807
(
2004
).
40.
H. K.
Birnbaum
and
P.
Sofronis
,
Mater. Sci. Eng. A
176
,
191
202
(
1994
).
41.
A. M.
Dongare
,
A. M.
Rajendran
,
B.
LaMattina
,
M. A.
Zikry
, and
D. W.
Brenner
,
Phys. Rev. B
80
,
104108
(
2009
).
42.
Y. C.
Wang
,
W.
Zhang
,
L. Y.
Wang
,
Z.
Zhuang
,
E.
Ma
,
J.
Li
, and
Z. W.
Shan
,
NPG Asia Mater.
8
,
e291
(
2016
).
43.
C. T.
Liu
,
L.
Heatherly
,
D. S.
Easton
,
C. A.
Carmichael
,
J. H.
Schneibel
,
C. H.
Chen
,
J. L.
Wright
,
M. H.
Yoo
,
J. A.
Horton
, and
A.
Inoue
,
Metall. Mater. Trans. A
29
,
1811
1820
(
1998
).
44.
J. J.
Lin
and
T. P.
Perng
,
J. Mater. Sci. Lett.
10
,
1443
1445
(
1991
).
45.
N.
Eliaz
and
D.
Eliezer
,
Adv. Perform. Mater.
6
,
5
31
(
1999
).

Supplementary Material

You do not currently have access to this content.