The development of novel electron devices requires a continuous support by process and device simulations in order to improve electrical properties and reduce production costs. However, an accurate description of the electrical properties of impurities in silicon carbide – a key wide bandgap semiconductor for power devices – is currently not available, which significantly limits the predictability of critical fabrication processes. Here, we introduce a transient model for electrical activation of implanted aluminium and phosphorus in silicon carbide to fill this gap. Our results suggest differences between acceptor- and donor-type dopants including activation speed, saturation limit, and activation regions. We predict acceptor and donor concentrations according to the various annealing times, temperatures, and doping concentrations. The results are used for the fabrication of PN-junction diodes, which are characterized and compared with the experimental findings. Finally, we predict improvements of various annealing steps, i.e., increased active concentration, increased carrier concentration, and decreased sheet resistance, and perform a comprehensive comparison with experimental data to evaluate the proposed model.

1.
T.
Kimoto
and
J. A.
Cooper
,
Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications
(
John Wiley and Sons
,
2014
).
2.
M. I.
Idris
,
M. H.
Weng
,
H.
Chan
,
A.
Murphy
,
D. A.
Smith
,
R.
Young
,
E. P.
Ramsay
,
D. T.
Clark
,
N. G.
Wright
, and
A. B.
Horsfall
, “
Electrical stability impact of gate oxide in channel implanted SiC NMOS and PMOS transistors
,”
Mater. Sci. Forum
897
,
513
516
(
2017
).
3.
R.
Radhakrishnan
,
M. F.
MacMillan
, and
R. L.
Woodin
, “
Doping engineering to enhance performance of a silicon carbide power device
,” in
Proceedings of the Workshop on Wide Bandgap Power Devices and Applications (WiPDA)
(
2016
), pp.
105
107
.
4.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Growth rates of dry thermal oxidation of 4H-silicon carbide
,”
J. Appl. Phys.
120
,
135705
(
2016
).
5.
R.
Nipoti
,
A.
Parisini
,
G.
Sozzi
,
M.
Puzzanghera
,
A.
Parisini
, and
A.
Carnera
, “
Structural and functional characterizations of Al+ implanted 4H-SiC layers and Al+ implanted 4H-SiC pn junctions after 1950 C post implantation annealing
,”
ECS J. Solid State Sci. Technol.
5
,
P621
P626
(
2016
).
6.
J.
Weisse
,
M.
Hauck
,
T.
Sledziewski
,
M.
Tschiesche
,
M.
Krieger
,
A.
Bauer
,
H.
Mitlehner
,
L.
Frey
, and
T.
Erlbacher
, “
Analysis of compensation effects in aluminum-implanted 4H–SiC devices
,”
Mater. Sci. Forum
924
,
184
187
(
2018
).
7.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Modeling and simulation of electrical activation of acceptor-type dopants in silicon carbide
,”
Mater. Sci. Forum
924
,
192
195
(
2018
).
8.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Empirical model for electrical activation of aluminium and boron doped silicon carbide
,”
IEEE Trans. Electron Devices
65
,
674
679
(
2018
).
9.
See https://www.silvaco.com/products/tcad/ (18.04.2017) for Silvaco's Victory Process simulator.
10.
A.
Parisini
and
R.
Nipoti
, “
Analysis of the hole transport through valence band states in heavy Al doped 4H-SiC by ion implantation
,”
J. Appl. Phys.
114
,
243703
(
2013
).
11.
J.
Senzaki
,
K.
Fukuda
, and
K.
Arai
, “
Influences of postimplantation annealing conditions on resistance lowering in high-phosphorus-implanted 4H-SiC
,”
J. Appl. Phys.
94
,
2942
2947
(
2003
).
12.
N.
Saks
,
A.
Suvorov
, and
D.
Capell
, “
High temperature high-dose implantation of aluminum in 4H-SiC
,”
Appl. Phys. Lett.
84
,
5195
5197
(
2004
).
13.
F.
Schmid
,
M.
Laube
,
G.
Pensl
,
G.
Wagner
, and
M.
Maier
, “
Electrical activation of implanted phosphorus ions in [0001] and [11-20]-oriented 4H-SiC
,”
J. Appl. Phys.
91
,
9182
9186
(
2002
).
14.
T.
Kimoto
,
O.
Takemura
,
H.
Matsunami
,
T.
Nakata
, and
M.
Inoue
, “
Al+ and B+ implantations into 6H-SiC epilayers and application to PN junction diodes
,”
J. Electron. Mater.
27
,
358
364
(
1998
).
15.
R.
Nipoti
,
A.
Carnera
,
G.
Alfieri
, and
L.
Kranz
, “
About the electrical activation of 1 × 1020 cm–3 ion implanted Al in 4H–SiC at annealing temperatures in the range 1500
1950 °C
,”
Mater. Sci. Forum
924
,
333
338
(
2018
).
16.
R.
Nipoti
,
R.
Scaburri
,
A.
Hallén
, and
A.
Parisini
, “
Conventional thermal annealing for a more efficient p-type doping of Al+ implanted 4H-SiC
,”
J. Mater. Res.
28
,
17
22
(
2013
).
17.
W.
Hailei
,
S.
Guosheng
,
Y.
Ting
,
Y.
Guoguo
,
W.
Lei
,
Z.
Wanshun
,
L.
Xingfang
,
Z.
Yiping
, and
W.
Jialiang
, “
Effect of annealing process on the surface roughness in multiple Al implanted 4H-SiC
,”
J. Semicond.
32
,
072002
(
2011
).
18.
S. G.
Sundaresan
,
M. V.
Rao
,
Y.-L.
Tian
,
M. C.
Ridgway
,
J. A.
Schreifels
, and
J. J.
Kopanski
, “
Ultrahigh-temperature microwave annealing of Al+- and P+- implanted 4H-SiC
,”
J. Appl. Phys.
101
,
073708
(
2007
).
19.
N.
Saks
,
A.
Agarwal
,
S.
Ryu
, and
J.
Palmour
, “
Low-dose aluminum and boron implants in 4H and 6H silicon carbide
,”
J. Appl. Phys.
90
,
2796
2805
(
2001
).
20.
M.
Laube
,
F.
Schmid
,
G.
Pensl
,
G.
Wagner
,
M.
Linnarsson
, and
M.
Maier
, “
Electrical activation of high concentrations of N+ and P+ ions implanted into 4H-SiC
,”
J. Appl. Phys.
92
,
549
554
(
2002
).
21.
M. A.
Capano
,
J.
Cooper
, Jr.
,
M.
Melloch
,
A.
Saxler
, and
W.
Mitchel
, “
Ionization energies and electron mobilities in phosphorus and nitrogen-implanted 4H-silicon carbide
,”
J. Appl. Phys.
87
,
8773
8777
(
2000
).
22.
T.
Troffer
,
C.
Peppermüller
,
G.
Pensl
,
K.
Rottner
, and
A.
Schöner
, “
Phosphorus-related donors in 6H-SiC generated by ion implantation
,”
J. Appl. Phys.
80
,
3739
3743
(
1996
).
23.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
, “
Modeling of electrical activation ratios of phosphorus and nitrogen doped silicon carbide
,” in
Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
2017
), pp.
125
128
.
24.
B.
Wendroff
,
Theoretical Numerical Analysis
(
Elsevier
,
2014
).
25.
S.
Arrhenius
,
Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte
(
Wilhelm Engelmann
,
1889
).
26.
T.
Kimoto
,
K.
Kawahara
,
N.
Kaji
,
H.
Fujihara
, and
J.
Suda
, “
Ion implantation technology in SiC for high-voltage/high-temperature devices
,” in
Proceedings of the International Workshop on Junction Technology (IWJT)
(
2016
), pp.
54
58
.
You do not currently have access to this content.