Irradiation by light ions may change the mechanical properties of nanofoams. Using molecular-dynamics simulation, we study the effect of irradiating a Au foam (porosity, 50%, and ligament diameter, 3 nm) with heavy ions: here, 10 keV Au ions up to a dose of 4 × 1016 m−2. We demonstrate that in consequence, the ligament morphology changes in the irradiated region, caused by local melting. The changes in mechanical properties are monitored by simulated nanoindentation tests. We find that the foam hardness is only around 1/3 of the hardness of a bulk Au crystal. Irradiation increases the hardness of the foam by around 10% in the central irradiated area. The plastic zone extends to only 1.5 ac, where ac denotes the contact radius; this value is unchanged under irradiation. The hardness increase after irradiation is attributed to two concurring effects. To begin with, irradiation induces melting and annealing of the ligaments, leading to their coarsening and alleviating surface stress, which in turn increases the dislocation nucleation threshold. In addition, irradiation introduces a stacking fault forest that acts as an obstacle to dislocation motion.

1.
B. C.
Tappan
,
S. A.
Steiner
, and
E. P.
Luther
,
Angew. Chem. Int. Ed.
49
,
4544
(
2010
).
2.
C.
Volkert
,
E.
Lilleodden
,
D.
Kramer
, and
J.
Weissmüller
,
Appl. Phys. Lett.
89
,
061920
(
2006
).
3.
J.
Biener
,
A. M.
Hodge
,
J. R.
Hayes
,
C. A.
Volkert
,
L. A.
Zepeda-Ruiz
,
A. V.
Hamza
, and
F. F.
Abraham
,
Nano Lett.
6
,
2379
(
2006
).
4.
A.
Hodge
,
J.
Biener
,
J.
Hayes
,
P.
Bythrow
,
C.
Volkert
, and
A.
Hamza
,
Acta Mater.
55
,
1343
(
2007
).
5.
Y.
Sun
,
J.
Ye
,
Z.
Shan
,
A. M.
Minor
, and
T. J.
Balk
,
JOM
59
,
54
(
2007
).
6.
Y.
Sun
,
J.
Ye
,
A. M.
Minor
, and
T. J.
Balk
,
Microsc. Res. Tech.
72
,
232
(
2009
).
7.
X.-Y.
Sun
,
G.-K.
Xu
,
X.
Li
,
X.-Q.
Feng
, and
H.
Gao
,
J. Appl. Phys.
113
,
023505
(
2013
).
8.
D.
Farkas
,
A.
Caro
,
E.
Bringa
, and
D.
Crowson
,
Acta Mater.
61
,
3249
(
2013
).
9.
C. J.
Ruestes
,
D.
Farkas
,
A.
Caro
, and
E. M.
Bringa
,
Acta Mater.
108
,
1
(
2016
).
10.
B.-N. D.
Ngô
,
A.
Stukowski
,
N.
Mameka
,
J.
Markmann
,
K.
Albe
, and
J.
Weissmüller
,
Acta Mater.
93
,
144
(
2015
).
11.
B.-N.
Ngô
,
B.
Roschning
,
K.
Albe
,
J.
Weissmüller
, and
J.
Markmann
,
Scr. Mater.
130
,
74
(
2017
).
12.
T. D.
de la Rubia
,
H. M.
Zbib
,
T. A.
Khraishi
,
B. D.
Wirth
,
M.
Victoria
, and
M. J.
Caturla
,
Nature
406
,
871
(
2000
).
13.
M.
Victoria
,
N.
Baluc
,
C.
Bailat
,
Y.
Dai
,
M.
Luppo
,
R.
Schaublin
, and
B.
Singh
,
J. Nucl. Mater.
276
,
114
(
2000
).
14.
J.
Robach
,
I.
Robertson
,
B.
Wirth
, and
A.
Arsenlis
,
Philos. Mag.
83
,
955
(
2003
).
15.
S. J.
Zinkle
and
L. L.
Snead
,
Annu. Rev. Mater. Res.
44
,
241
(
2014
).
16.
S. A.
Thibeault
,
J. H.
Kang
,
G.
Sauti
,
C.
Park
,
C. C.
Fay
, and
G. C.
King
,
MRS Bull.
40
,
836
(
2015
).
17.
J. F.
Rodriguez-Nieva
,
E. M.
Bringa
,
T. A.
Cassidy
,
R. E.
Johnson
,
A.
Caro
,
M.
Fama
,
M. J.
Loeffler
,
R. A.
Baragiola
, and
D.
Farkas
,
Astrophys. J. Lett.
743
,
L5
(
2011
).
18.
E. M.
Bringa
,
J. D.
Monk
,
A.
Caro
,
A.
Misra
,
L.
Zepeda-Ruiz
,
M.
Duchaineau
,
F.
Abraham
,
M.
Nastasi
,
S. T.
Picraux
,
Y. Q.
Wang
 et al,
Nano Lett.
12
,
3351
(
2012
).
19.
E. G.
Fu
,
M.
Caro
,
L. A.
Zepeda-Ruiz
,
Y.
Wang
,
K.
Baldwin
,
E.
Bringa
,
M.
Nastasi
, and
A.
Caro
,
Appl. Phys. Lett.
101
,
191607
(
2012
).
20.
J. F.
Rodriguez-Nieva
and
E. M.
Bringa
,
Nucl. Instrum. Methods B
304
,
23
(
2013
).
21.
P.
Sigmund
,
Appl. Phys. Lett.
25
,
169
(
1974
);
P.
Sigmund
,
Appl. Phys. Lett.
27
,
52
(
1975
).
22.
T. J.
Colla
,
R.
Aderjan
,
R.
Kissel
, and
H. M.
Urbassek
,
Phys. Rev. B
62
,
8487
(
2000
).
23.
M.
Caro
,
W. M.
Mook
,
E. G.
Fu
,
Y. Q.
Wang
,
C.
Sheehan
,
E.
Martinez
,
J. K.
Baldwin
, and
A.
Caro
,
Appl. Phys. Lett.
104
,
233109
(
2014
).
24.
L.
Zepeda-Ruiz
,
E.
Martinez
,
M.
Caro
,
E.
Fu
, and
A.
Caro
,
Appl. Phys. Lett.
103
,
031909
(
2013
).
25.
E.
Figueroa
,
D.
Tramontina
,
G.
Gutierrez
, and
E.
Bringa
,
J. Nucl. Mater.
467
,
677
(
2015
).
26.
C.
Zhang
,
Y.
Li
,
W.
Zhou
,
L.
Hu
, and
Z.
Zeng
,
J. Nucl. Mater.
466
,
328
(
2015
).
27.
D. A.
Crowson
,
D.
Farkas
, and
S. G.
Corcoran
,
Scr. Mater.
56
,
919
(
2007
).
28.
D. A.
Crowson
,
D.
Farkas
, and
S. G.
Corcoran
,
Scr. Mater.
61
,
497
(
2009
).
30.
T. J.
Colla
and
H. M.
Urbassek
,
Nucl. Instrum. Methods B
164-165
,
687
(
2000
).
31.
S.
Zimmermann
and
H. M.
Urbassek
,
Nucl. Instrum. Methods B
228
,
75
(
2005
).
32.
S.
Zimmermann
and
H. M.
Urbassek
,
Nucl. Instrum. Methods B
255
,
208
(
2007
).
33.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
New York
,
1985
).
34.
J. R.
Beeler
, Jr.
,
Radiation Effects Computer Experiments
(
North-Holland
,
Amsterdam
,
1983
).
35.
C. L.
Kelchner
,
S. J.
Plimpton
, and
J. C.
Hamilton
,
Phys. Rev. B
58
,
11085
(
1998
).
36.
J.
Stuckner
,
K.
Frei
,
I.
McCue
,
M. J.
Demkowicz
, and
M.
Murayama
,
Comput. Mater. Sci.
139
,
320
(
2017
).
37.
G.
Ziegenhain
,
H. M.
Urbassek
, and
A.
Hartmaier
,
J. Appl. Phys.
107
,
061807
(
2010
).
38.
G.
Ziegenhain
,
A.
Hartmaier
, and
H. M.
Urbassek
,
J. Mech. Phys. Sol.
57
,
1514
(
2009
).
39.
A.
Stukowski
,
Model. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
40.
A.
Stukowski
and
K.
Albe
,
Model. Simul. Mater. Sci. Eng.
18
,
085001
(
2010
).
41.
B.
Wu
,
A.
Heidelberg
, and
J. J.
Boland
,
Nat. Mater.
4
,
525
(
2005
).
42.
C. R.
Weinberger
and
W.
Cai
,
J. Mater. Chem.
22
,
3277
(
2012
).
43.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
, 3rd ed. (
Pergamon Press
,
Oxford
,
1984
), Vol.
257
.
44.
E.
Rabkin
and
D. J.
Srolovitz
,
Nano Lett.
7
,
101
(
2007
).
45.
J. R.
Greer
and
W. D.
Nix
,
Phys. Rev. B
73
,
245410
(
2006
).
46.
R.
Dou
and
B.
Derby
,
J. Mater. Res.
25
,
746
(
2010
).
47.
R.
Dou
and
B.
Derby
,
Philos. Mag.
91
,
1070
(
2011
).
48.
D.
Farkas
,
J.
Stuckner
,
R.
Umbel
,
B.
Kuhr
, and
M. J.
Demkowicz
,
J. Mater. Res.
33
,
1382
(
2018
).
49.
N. J.
Briot
and
T. J.
Balk
,
MRS Commun.
8
,
132
(
2018
).
50.
K.
Durst
,
B.
Backes
, and
M.
Göken
,
Scr. Mater.
52
,
1093
(
2005
).
51.
Y.
Gao
,
C. J.
Ruestes
,
D. R.
Tramontina
, and
H. M.
Urbassek
,
J. Mech. Phys. Sol.
75
,
58
(
2015
).
52.
I.
Alabd Alhafez
,
C. J.
Ruestes
,
Y.
Gao
, and
H. M.
Urbassek
,
Nanotechnology
27
,
045706
(
2016
).
53.
H.
Tsuzuki
,
P. S.
Branicio
, and
J. P.
Rino
,
Comput. Phys. Commun.
177
,
518
(
2007
).
54.
J.
Biener
,
A. M.
Hodge
,
A. V.
Hamza
,
L. M.
Hsiung
, and
J. H.
Satcher
, Jr.
,
J. Appl. Phys.
97
,
024301
(
2005
).
55.
Z.
Yang
,
F.
Jiao
,
Z.
Lu
, and
Z.
Wang
,
Sci. China Phys., Mech. Astron.
56
,
498
(
2013
).
56.
N.
Mameka
,
J.
Markmann
, and
J.
Weissmüller
,
Nat. Commun.
8
,
1976
(
2017
).
57.
A.
Leitner
,
V.
Maier-Kiener
,
J.
Jeong
,
M.
Abad
,
P.
Hosemann
,
S.
Oh
, and
D.
Kiener
,
Acta Mater.
121
,
104
(
2016
).
58.
M.
Shaw
and
T.
Sata
,
Int. J. Mech. Sci.
8
,
469
(
1966
).
59.
K.
Johnson
,
J. Mech. Phys. Solids
18
,
115
(
1970
).
60.
A.
Bhattacharya
and
W.
Nix
,
Int. J. Solids Struct.
27
,
1047
(
1991
).
61.
A. C.
Fischer-Cripps
,
Introduction to Contact Mechanics
(
Springer
,
2000
).
62.
M. C.
Shaw
and
G. J.
DeSalvo
,
Metallogr., Microstruct., Anal.
1
,
310
(
2012
).
63.
Y.-T.
Cheng
and
C.-M.
Cheng
,
J. Appl. Phys.
84
,
1284
(
1998
).
64.
M. F.
Ashby
,
T.
Evans
,
N. A.
Fleck
,
J.
Hutchinson
,
H.
Wadley
, and
L.
Gibson
,
Metal Foams: A Design Guide
(
Elsevier
,
2000
).
65.
K.
Mangipudi
,
E.
Epler
, and
C.
Volkert
,
Scr. Mater.
146
,
150
(
2018
).
66.
N. J.
Briot
and
T. J.
Balk
,
Philos. Mag.
95
,
2955
(
2015
).
You do not currently have access to this content.