A full scale hydrodynamic simulation intended for the accurate description of shock-induced detonation transition was conducted as a part of an ignition sensitivity analysis of an energetic component system. The system is composed of an exploding foil initiator (EFI), a donor explosive unit, a stainless steel gap, and an acceptor explosive. A series of velocity interferometer system for any reflector measurements were used to validate the hydrodynamic simulations based on the reactive flow model that describes the initiation of energetic materials arranged in a train configuration. A numerical methodology with ignition and growth mechanisms for tracking multi-material boundary interactions as well as severely transient fluid-structure coupling between high explosive charges and metal gap is described. The free surface velocity measurement is used to evaluate the sensitivity of energetic components that are subjected to strong pressure waves. Then, the full scale hydrodynamic simulation is performed on the flyer impacted initiation of an EFI driven pyrotechnical system.

1.
B.
Kim
,
M.
Kim
, and
J. J.
Yoh
, “
Shock to detonation transition analysis using experiments and models
,”
Proc. Combust. Inst.
36
,
2699
2707
(
2017
).
2.
H.
Yu
,
B.
Kim
,
S.
Jang
,
K.
Kim
, and
J. J.
Yoh
, “
Performance characterization of a miniaturized exploding foil initiator via modified VISAR interferometer and shock wave analysis
,”
J. Appl. Phys.
121
(
21
),
215901
(
2017
).
3.
K.
Kim
and
J. J.
Yoh
, “
A particle level-set based Eulerian method for multi-material detonation simulation of high explosive and metal confinements
,”
Proc. Combust. Inst.
34
,
2025
2033
(
2013
).
4.
K. L.
Gubskii
,
D. S.
Koshkin
,
A. S.
Antonov
,
A. V.
Mikhailuk
,
V. A.
Pirog
, and
A. P.
Kuznetsov
, “
Shock wave velocity measuring system based on Vernier VISAR-type interferometers
,”
J. Phys.: Conf. Ser.
653
,
012040
(
2015
).
5.
A. C.
Forsman
and
G. A.
Kyrala
, “
Non-Doppler shift related experimental shock wave measurements using velocity interferometer systems for any reflector
,”
Phys. Rev. E
63
,
056402
(
2001
).
6.
E. L.
Lee
and
C. M.
Tarver
, “
Phenomenological model of shock initiation in heterogeneous explosives
,”
Phys. Fluids
23
(
12
),
2362
2372
(
1980
).
7.
J. E.
Guilkey
,
T. B.
Harman
, and
B.
Banerjee
, “
An Eulerian–Lagrangian approach for simulating explosions of energetic devices
,”
Comput. Struct.
85
,
660
674
(
2007
).
8.
B.
Kim
,
J.
Park
,
K.
Lee
, and
J. J.
Yoh
, “
A reactive flow model for heavily aluminized cyclotrimethylene-trinitramine
,”
J. Appl. Phys.
116
(
2
),
023512
(
2014
).
9.
B.
Kim
,
J.
Park
, and
J. J.
Yoh
, “
Analysis on shock attenuation in gap test configuration for characterizing energetic materials
,”
J. Appl. Phys.
119
(
14
),
145902
(
2016
).
10.
K.
Kim
,
M.
Gwak
, and
J. J.
Yoh
, “
An enhanced particle reseeding algorithm for the hybrid particle level set method in compressible flows
,”
J. Sci. Comput.
65
,
431
453
(
2015
).
11.
B.
Kim
,
S.
Jang
, and
J. J.
Yoh
, “
A full scale hydrodynamic simulation of energetic component system
,”
Comput. Fluids
156
,
368
383
(
2017
).
12.
E. L.
Lee
,
H. C.
Hornig
, and
J. W.
Kury
,
Adiabatic Expansion of High Explosive Detonation Products
(
Lawrence Livermore National Laboratory
,
Livermore
,
1968
).
13.
L. E.
Fried
,
W. M.
Howard
, and
P. C.
Souers
,
Cheetah 2.0 User's Manual, UCRL-MA-117541
(
Lawrence Livermore National Laboratory
,
Livermore
,
1998
).
14.
D. J.
Steinberg
,
Equation of State and Strength Properties of Selected Materials, UCRL-MA-106439
(
Lawrence Livermore National Laboratory
,
Livermore
,
1996
).
15.
J. J.
Yoh
and
K.
Kim
, “
Shock compression of condensed matter using Eulerian multimaterial method: Applications to multidimensional shocks, deflagration, detonation, and laser ablation
,”
J. Appl. Phys.
103
(
11
),
113507
(
2008
).
16.
K.
Kim
and
J. J.
Yoh
, “
Shock compression of condensed matter using multimaterial reactive ghost fluid method
,”
J. Math. Phys.
49
,
043511
(
2008
).
You do not currently have access to this content.