In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

1.
R.
Vaßen
,
M. O.
Jarligo
,
T.
Steinke
,
D. E.
Mack
, and
D.
Stöver
, “
Overview on advanced thermal barrier coatings
,”
Surf. Coat. Technol.
205
,
938
942
(
2010
).
2.
C. U.
Hardwicke
and
Y. C.
Lau
, “
Advances in thermal spray coatings for gas turbines and energy generation: A review
,”
J. Therm. Spray Technol.
22
,
564
576
(
2013
).
3.
V.
Viswanathan
,
G.
Dwivedi
, and
S.
Sampath
, “
Engineered multilayer thermal barrier coatings for enhanced durability and functional performance
,”
J. Am. Ceram. Soc.
97
,
2770
2778
(
2014
).
4.
I. T.
Spitsberg
,
D. R.
Mumm
, and
A. G.
Evans
, “
On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings
,”
Mater. Sci. Eng. A.
394
,
176
191
(
2005
).
5.
B.
Heeg
,
V. K.
Tolpygo
, and
D. R.
Clarke
, “
Damage evolution in thermal barrier coatings with thermal cycling
,”
J. Am. Ceram. Soc.
94
,
s112
s119
(
2011
).
6.
X.
Chen
,
R.
Wang
,
N.
Yao
,
A. G.
Evans
,
J. W.
Hutchinson
, and
R. W.
Bruce
, “
Foreign object damage in a thermal barrier system: Mechanisms and simulations
,”
Mater. Sci. Eng. A.
352
,
221
231
(
2003
).
7.
A. G.
Evans
,
D. R.
Clarke
, and
C. G.
Levi
, “
The influence of oxides on the performance of advanced gas turbines
,”
J. Eur. Ceram. Soc.
28
,
1405
1419
(
2008
).
8.
H. E.
Evans
, “
Oxidation failure of TBC systems: An assessment of mechanisms
,”
Surf. Coat. Technol.
206
,
1512
1521
(
2011
).
9.
A. G.
Evans
,
D. R.
Mumm
,
J. W.
Hutchinson
,
G. H.
Meier
, and
F. S.
Pettit
, “
Mechanisms controlling the durability of thermal barrier coatings
,”
Prog. Mater. Sci.
46
,
505
553
(
2001
).
10.
J.
Rösler
,
M.
Bäker
, and
K.
Aufzug
, “
A parametric study of the stress state of thermal barrier coatings: Part I: Creep relaxation
,”
Acta Mater.
52
,
4809
4817
(
2004
).
11.
E. P.
Busso
,
Z. Q.
Qian
,
M. P.
Taylor
, and
H. E.
Evans
, “
The influence of bond coat and topcoat mechanical properties on stress development in thermal barrier coating systems
,”
Acta Mater.
57
,
2349
2361
(
2009
).
12.
E. P.
Busso
,
H. E.
Evans
,
Z. Q.
Qian
, and
M. P.
Taylor
, “
Effects of breakaway oxidation on local stresses in thermal barrier coatings
,”
Acta Mater.
58
,
1242
1251
(
2010
).
13.
E. P.
Busso
,
J.
Lin
,
S.
Sakurai
, and
M.
Nakayama
, “
A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system. Part I: Model formulation
,”
Acta Mater.
49
,
1515
1528
(
2001
).
14.
L. G.
Zhao
,
N. P.
O'Dowd
, and
E. P.
Busso
, “
A coupled kinetic-constitutive approach to the study of high temperature crack initiation in single crystal nickel-base superalloys
,”
J. Mech. Phys. Solids.
54
,
288
309
(
2006
).
15.
C.
Lin
and
Y. M.
Li
, “
Interface stress evolution considering the combined creep–plastic behavior in thermal barrier coatings
,”
Mater. Des.
89
,
245
254
(
2016
).
16.
Y. J.
Chai
,
C.
Lin
, and
Y. M.
Li
, “
Effects of creep-plastic behavior on stress development in TBCs during cooling
,”
Ceram. Int.
43
,
11627
11634
(
2017
).
17.
K.
Loeffel
and
L.
Anand
, “
A chemo-thermo-mechanically coupled theory for elastic–visco plastic deformation, diffusion, and volumetric swelling due to a chemical reaction
,”
Int. J. Plasticity
27
,
1409
1431
(
2011
).
18.
K.
Loeffel
,
L.
Anand
, and
Z. M.
Gasem
, “
On modeling the oxidation of high–temperature alloys
,”
Acta Mater.
61
,
399
424
(
2013
).
19.
G.
Calvarin-Amiri
,
R.
Molins
, and
A. M.
Huntz
, “
Effect of the application of a mechanical Load on the oxide-layer microstructure and on the oxidation mechanism of Ni–20Cr foils
,”
Oxid. Met.
53
,
399
426
(
2000
).
20.
F. C.
Larche
and
J. W.
Cahn
, “
The effect of self-stress on diffusion in solids
,”
Acta Metall.
30
,
1835
1845
(
1982
).
21.
F. C.
Larche
and
J. W.
Cahn
, “
The interactions of composition and stress in crystalline solids
,”
Acta Metall.
33
,
331
357
(
1985
).
22.
J.
Favergeon
,
T.
Montesin
, and
G.
Bertrand
, “
Mechano-chemical aspects of high temperature oxidation: Amesoscopic model applied to zirconium alloys
,”
Oxid. Met.
64
,
253
279
(
2005
).
23.
M.
Martena
,
D.
Botto
,
P.
Fino
,
S.
Sabbadini
,
M. M.
Gola
, and
C.
Badini
, “
Modelling of TBC system failure: Stress distribution as a function of TGO thickness and thermal expansion mismatch
,”
Eng. Failure Anal.
13
,
409
426
(
2006
).
24.
Y.
Sun
,
J.
Li
,
W.
Zhang
, and
T. J.
Wang
, “
Local stress evolution in thermal barrier coating system during isothermal growth of irregular oxide layer
,”
Surf. Coat. Technol.
216
,
237
250
(
2013
).
25.
M.
Bäker
, “
Influence of material models on the stress state in thermal barrier coating simulations
,”
Surf. Coat. Technol.
240
,
301
310
(
2014
).
26.
P. Y.
Hou
and
J.
Stinger
, “
The effect of reactive element additions on the selective oxidation, growth and adhesion of chromia scales
,”
Mater. Sci. Eng. A
202
,
1
10
(
1995
).
27.
M. E.
Gurtin
and
E.
Fried
,
The Mechanics and Thermodynamics of Continua
(
Cambridge University Press
,
Cambridge
,
2010
).
28.
L.
Dormieux
,
D.
Kondo
, and
F. J.
Ulm
,
Microporomechanics
(
John Wiley & Sons
,
Chichester
,
2006
).
29.
H. E.
Evans
, “
Stress effects in high-temperature oxidation of metals
,”
Int. Mater. Rev.
40
,
1
40
(
1995
).
30.
F. J.
Ulm
,
O.
Coussy
,
L.
Kefei
, and
C.
Larive
, “
Thermo–chemo–mechanics of ASR expansion in concrete structures
,”
J. Eng. Mech.-ASCE
126
,
233
242
(
2000
).
31.
P. W.
Atkins
and
J.
De Paula
,
Atkins' Physical Chemistry
, 9th ed. (
Oxford University Press
,
USA
,
2010
).
32.
H.
Hibbitt
,
B.
Karlsson
, and
P.
Sorensen
,
Abaqus User Subroutine Reference Manual Version 6.10
(
Dassault Systèmes Simulia Corp
,
USA
,
2011
).
33.
J.
Cheng
,
E. H.
Jordan
,
B.
Barber
, and
M.
Gell
, “
Thermal/residual stress in an electron beam physical vapor deposited thermal barrier coating system
,”
Acta Mater.
46
,
5839
5850
(
1998
).
34.
M. Y.
He
,
J. W.
Hutchinson
, and
A. G.
Evans
, “
Simulation of stresses and delamination in a plasma-sprayed thermal barrier system upon thermal cycling
,”
Mater. Sci. Eng. A
345
,
172
178
(
2003
).
35.
J.
Rösler
,
M.
Bäker
, and
M.
Volgmann
, “
Stress state and failure mechanisms of thermal barrier coatings: Role of creep in thermally grown oxide
,”
Acta Mater.
49
,
3659
3670
(
2001
).
36.
D.
Prot
and
C.
Monty
, “
Self-diffusion in α[sbnd] Al2O3. II. Oxygen diffusion in ‘undoped’ single crystals
,”
Philos. Mag. A
73
,
899
917
(
1996
).
37.
P. N.
Quested
,
R. F.
Brooks
,
L.
Chapman
,
L. R.
Morrell
,
Y.
Youssef
, and
K. C.
Mills
, “
Measurement and estimation of thermo physical properties of nickel based superalloys
,”
J. Mater. Sci. Technol.
25
,
154
162
(
2009
).
38.
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
JANAF Thermo Chemical Tables
(
Dow Chemical Corp
,
USA
,
1985
).
39.
V. K.
Tolpygo
and
D. R.
Clarke
, “
Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy
,”
Oxid. Met.
49
,
187
212
(
1998
).
You do not currently have access to this content.