GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

1.
S.
Gradečak
,
F.
Qian
,
Y.
Li
,
H.-G.
Park
, and
C. M.
Lieber
,
Appl. Phys. Lett.
87
,
173111
(
2005
).
2.
L.
Rigutti
,
M.
Tchernycheva
,
A.
De Luna Bugallo
,
G.
Jacopin
,
F. H.
Julien
,
L. F.
Zagonel
,
K.
March
,
O.
Stephan
,
M.
Kociak
, and
R.
Songmuang
,
Nano Lett.
10
,
2939
(
2010
).
3.
R.
Yan
,
D.
Gargas
, and
P.
Yang
,
Nat. Photonics
3
,
569
(
2009
).
4.
L.
Bugallo Ade
,
M.
Tchernycheva
,
G.
Jacopin
,
L.
Rigutti
,
F. H.
Julien
,
S. T.
Chou
,
Y. T.
Lin
,
P. H.
Tseng
, and
L. W.
Tu
,
Nanotechnology
21
,
315201
(
2010
).
5.
B.
Tian
,
T. J.
Kempa
, and
C. M.
Lieber
,
Chem. Soc. Rev.
38
,
16
(
2009
).
6.
T.
Kida
,
Y.
Minami
,
G.
Guan
,
M.
Nagano
,
M.
Akiyama
, and
A.
Yoshida
,
J. Mater. Sci.
41
,
3527
(
2006
).
7.
H. S.
Jung
,
Y. J.
Hong
,
Y.
Li
,
J.
Cho
,
Y.-J.
Kim
, and
G.-C.
Yi
,
ACS Nano
2
,
637
(
2008
).
8.
D.
Wang
,
A.
Pierre
,
M. G.
Kibria
,
K.
Cui
,
X.
Han
,
K. H.
Bevan
,
H.
Guo
,
S.
Paradis
,
A. R.
Hakima
, and
Z.
Mi
,
Nano Lett.
11
,
2353
(
2011
).
9.
D.
Beydoun
,
R.
Amal
,
G.
Low
, and
S.
McEvoy
,
J. Nanopart. Res.
1
,
439
(
1999
).
10.
M.
Pschenitza
,
S.
Meister
,
A.
von Weber
,
A.
Kartouzian
,
U.
Heiz
, and
B.
Rieger
,
ChemCatChem
8
,
2688
(
2016
).
11.
B.
Wang
and
P. W.
Leu
,
Opt. Lett.
37
,
3756
(
2012
).
12.
C.
Lin
and
M. L.
Povinelli
,
Opt. Express
17
,
19371
(
2009
).
13.
M.
Heiss
,
E.
Russo-Averchi
,
A.
Dalmau-Mallorquí
,
G.
Tütüncüoǧlu
,
F.
Matteini
,
D.
Rüffer
,
S.
Conesa-Boj
,
O.
Demichel
,
E.
Alarcon-Lladó
, and
A.
Fontcuberta i Morral
,
Nanotechnology
25
,
014015
(
2014
).
14.
J.
Li
,
H.
Yu
, and
Y.
Li
,
Nanotechnology
23
,
194010
(
2012
).
15.
C.
Hauswald
,
I.
Giuntoni
,
T.
Flissikowski
,
T.
Gotschke
,
R.
Calarco
,
H. T.
Grahn
,
L.
Geelhaar
, and
O.
Brandt
,
ACS Photonics
4
,
52
(
2017
).
16.
N.
Anttu
and
H. Q.
Xu
,
Opt. Express
21
,
A558
(
2013
).
17.
P. M.
Wu
,
N.
Anttu
,
H. Q.
Xu
,
L.
Samuelson
, and
M. E.
Pistol
,
Nano Lett.
12
,
1990
(
2012
).
18.
A.
Dorodnyy
,
E.
Alarcon-Llado
,
V.
Shklover
,
C.
Hafner
,
I. M. A.
Fontcuberta
, and
J.
Leuthold
,
ACS Photonics
2
,
1284
(
2015
).
20.
F.
Schuster
,
M.
Hetzl
,
S.
Weiszer
,
J. A.
Garrido
,
M.
de la Mata
,
C.
Magen
,
J.
Arbiol
, and
M.
Stutzmann
,
Nano Lett.
15
,
1773
(
2015
).
21.
H.
Sekiguchi
,
K.
Kishino
, and
A.
Kikuchi
,
Appl. Phys. Express
1
,
124002
(
2008
).
22.
A.-L.
Henneghien
,
B.
Gayral
,
Y.
Désières
, and
J.-M.
Gérard
,
J. Opt. Soc. Am. B
26
,
2396
(
2009
).
23.
S.
Mokkapati
,
D.
Saxena
,
H. H.
Tan
, and
C.
Jagadish
,
Sci. Rep.
5
,
15339
(
2015
).
24.
A. W.
Snyder
and
J. D.
Love
,
Optical Waveguide Theory
, 1st ed. (
Chapman and Hall
,
New York
,
1983
).
25.
N.
Dhindsa
,
J.
Walia
, and
S. S.
Saini
,
Nanotechnology
27
,
495203
(
2016
).
26.
Y.
Wu
,
Z.
Xia
,
Z.
Liang
,
J.
Zhou
,
H.
Jiao
,
H.
Cao
, and
X.
Qin
,
Opt. Express
22
,
A1292
(
2014
).
27.
J.
Chesin
and
S.
Gradečak
,
J. Nanophotonics
8
,
083095
(
2014
).
28.
J.
Shi
,
M. E.
Pollard
,
C. A.
Angeles
,
R.
Chen
,
J. C.
Gates
, and
M. D. B.
Charlton
,
Sci. Rep.
7
,
1812
(
2017
).
29.
D.
Khlopin
,
F.
Laux
,
W. P.
Wardley
,
J.
Martin
,
G. A.
Wurtz
,
J.
Plain
,
N.
Bonod
,
A. V.
Zayats
,
W.
Dickson
, and
D.
Gérard
,
J. Opt. Soc. Am. B
34
,
691
(
2017
).
30.
N.
Anttu
,
V.
Dagytè
,
X.
Zeng
,
G.
Otnes
, and
M.
Borgström
,
Nanotechnology
28
,
205203
(
2017
).
31.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
Princeton
,
2007
).
32.
L.
Wen
,
X.
Li
,
Z.
Zhao
,
S.
Bu
,
X.
Zeng
,
J. H.
Huang
, and
Y.
Wang
,
Nanotechnology
23
,
505202
(
2012
).
33.
B. C. P.
Sturmberg
,
K. B.
Dossou
,
L. C.
Botten
,
A. A.
Asatryan
,
C. G.
Poulton
,
C.
Martijm de Sterke
, and
R. C.
McPhedran
,
Opt. Express
19
,
A1067
(
2011
).
34.
B. C. P.
Sturmberg
,
K. B.
Dossou
,
L. C.
Botten
,
A. A.
Asatryan
,
C. G.
Poulton
,
R. C.
McPhedran
, and
C. M.
de Sterke
,
ACS Photonics
1
,
683
(
2014
).
35.
F. J.
Bezares
,
J. P.
Long
,
O. J.
Glembocki
,
J.
Guo
,
R. W.
Rendell
,
R.
Kasica
,
L.
Shirey
,
J. C.
Owrutsky
, and
J. D.
Caldwell
,
Opt. Express
21
,
27587
(
2013
).
36.
K. T.
Fountaine
,
W. S.
Whitney
, and
H. A.
Atwater
,
J. Appl. Phys.
116
,
153106
(
2014
).
37.
X.
Chen
,
S.
Shen
,
L.
Guo
, and
S. S.
Mao
,
Chem. Rev.
110
,
6503
(
2010
).
38.
L.
Han
,
M.
Lin
, and
S.
Haussener
,
ChemSusChem
10
,
2158
(
2017
).

Supplementary Material

You do not currently have access to this content.