We investigate the band properties of InAs/AlSb/GaSb (N-structure) and InAs/GaSb material based type II superlattice (T2SL) photodedectors. The superlattice empirical pseudopotential method is used to define band-structures such as the bandgap and heavy hole-light hole (hh-lh) splitting energies in the mid-wavelength infrared range (MWIR) and long wavelength range (LWIR). The calculations are carried out on the variation of AlSb/GaSb layer thickness for (InAs)10.5/(AlSb)x/(GaSb)9-x and the variation of InAs layer thickness for (InAs)x/(AlSb)3/(GaSb)6 T2SL structures at 77 K. For the same bandgap energy of 229 meV (5.4 μm in wavelength), hh-lh splitting energy is calculated as 194 meV for the (InAs)7.5/(AlSb)3/(GaSb)6 structure compared to the (InAs)10.5/(GaSb)9 structure with hh-lh splitting energy of 91 meV within the MWIR. Long wavelength performance of InAs/AlSb/GaSb structure shows superior electronic properties over the standard InAs/GaSb T2SL structure with larger hh-lh splitting energy which is larger than the bandgap energy. The best result is obtained for (InAs)17/(AlSb)3/(GaSb)6 with the minimum bandgap of 128 meV with hh-lh splitting energy of 194 meV, which is important for suppressing the Auger recombination process. These values are very promising for a photodetector design in both MWIR and LWIR in high temperature applications.

1.
M.
Hostut
,
M.
Alyoruk
,
T.
Tansel
,
A.
Kilic
,
R.
Turan
,
A.
Aydinli
, and
Y.
Ergun
, “
N-structure based on InAs/AlSb/GaSb superlattice photodetectors
,”
Superlattices Microstruct.
79
,
116
122
(
2015
).
2.
T.
Tansel
,
M.
Hostut
,
S.
Elagoz
,
A.
Kilic
,
Y.
Ergun
, and
A.
Aydinli
, “
Electrical performance of InAs/AlSb/GaSb superlattice photodetectors
,”
Superlattices Microstruct.
91
,
1–7
(
2016
).
3.
M. M.
Alyoruk
,
Y.
Ergun
, and
M.
Hostut
, “
AlSb and InAs-GaSb layer thickness effect on HH-LH splitting and band gap energies in InAs/AlSb/GaSb type-II superlattices
,”
Opto-Electron. Rev.
23
(
1
),
24
27
(
2015
).
4.
O.
Salihoglu
,
A.
Muti
,
K.
Kutluer
,
T.
Tansel
,
R.
Turan
,
Y.
Ergun
, and
A.
Aydinli
, ““
N” structure for type-II superlattice photodetectors
,”
Appl. Phys. Lett.
101
,
073505
(
2012
).
5.
O.
Salihoglu
,
M.
Hostut
,
T.
Tansel
,
K.
Kutluer
,
A.
Kilic
,
M.
Alyoruk
,
C.
Sevik
,
R.
Turan
,
Y.
Ergun
, and
A.
Aydinli
, “
Electronic and optical properties of 4.2 μm “N” structured superlattice MWIR photodetectors
,”
Infrared Phys. Technol.
59
,
36
40
(
2013
).
6.
A.
Zunger
, “
On the Farsightedness (hyperopia) of the Standard k. p Model
,”
Phys. Status Solidi A
190
(
2
),
467
475
(
2002
).
7.
F.
Szmulowicz
,
H.
Haugan
, and
G. J.
Brown
, “
Effect of interfaces and the spin-orbit band on the band gaps of InAs/GaSb superlattices beyond the standard envelope-function approximation
,”
Phys. Rev. B
69
,
155321
(
2004
).
8.
F.
Szmulowicz
,
H. J.
Haugan
,
G. J.
Brown
,
K.
Mahalingam
,
B.
Ullrich
,
S. R.
Munshi
, and
L.
Grazulis
, “
Interfaces as design tools for short period InAs/GaSb type-II superlattices for mid-infrared detectors
,”
Opto-Electron. Rev.
14
(
1
),
69
75
(
2006
).
9.
H. J.
Haugan
,
F.
Szmulowicz
,
G. J.
Brown
, and
K.
Mahalingam
, “
Band gap tuning of InAs/GaSb type-II superlattices
,”
J. Appl. Phys.
96
,
2580
2585
(
2004
).
10.
R.
Magri
and
A.
Zunger
, “
Effects of interfacial atomic segregation on optical properties of InAs/GaSb superlattices
,”
Phys. Rev. B
64
,
081305(R)
(
2001
).
11.
P.
Piquini
,
A.
Zunger
, and
R.
Magri
, “
Pseudopotential calculations of band gaps and band edges of short-period (InAs)n/(GaSb)m superlattices with different substrates, layer orientations, and interfacial bonds
,”
Phys. Rev. B
77
,
115314
(
2008
).
12.
R.
Magri
and
A.
Zunger
, “
Effects of interfacial atomic segregation and intermixing on the electronic properties of InAs/GaSb superlattices
,”
Phys. Rev. B
65
,
165302
(
2002
).
13.
W. H.
Lau
and
M. E.
Flatté
, “
Effect of interface structure on the optical properties of InAs/GaSb laser active regions
,”
Appl. Phys. Lett.
80
,
1683
(
2002
).
14.
Y.-M.
Mu
,
H. Q.
Le
, and
S. S.
Pei
, “
Modeling of optically-pumped type-II lasers
,”
Proc. SPIE
4283
,
169
177
(
2001
).
15.
G. C.
Dente
and
M. L.
Tilton
, “
Pseudopotential methods for superlattices: Applications to mid-infrared semiconductor lasers
,”
J. Appl. Phys.
86
,
1420
1429
(
1999
).
16.
A. P.
Ongstad
 et al,
J. Appl. Phys.
89
,
2185
(
2001
).
17.
L. L.
Chang
 et al,
J. Vac. Sci. Technol.
19
,
589
(
1981
).
18.
G. C.
Dente
and
M. L.
Tilton
, “
Comparing pseudopotential predictions for InAs/GaSb superlattices
,”
Phys. Rev. B
66
,
165307
(
2002
).
19.
C.
Kittel
,
Quantum Theory of Solids
(
Wiley
,
New York
,
1963
).
20.
Y. M.
Mu
,
H. Q.
Le
, and
S. S.
Pei
, “
Modeling of optically-pumped type-II lasers
,”
Proc. SPIE
4283
,
169
177
(
2001
).
21.
P. C.
Klipstein
,
Y.
Livneh
,
O.
Klin
,
S.
Grossman
,
N.
Snapi
,
A.
Glozman
, and
E.
Weiss
, “
A k·p model of InAs/GaSb type II superlattice infrared detectors
,”
Infrared Phys. Technol.
59
,
53
59
(
2013
).
22.
M. Z.
Tidrow
,
L.
Zheng
,
H.
Barcikowski
,
J.
Wells
, and
L.
Aitcheson
, “
Recent succes on SLS FPAs and PDA's new direction for development
,”
Proc. SPIE
7298
,
72981O
(
2009
).
You do not currently have access to this content.