We present an analytic model to describe the DC current-voltage (I-V) relationship in scaled III-nitride high electron mobility transistors (HEMTs) in which transport within the channel is quasi-ballistic in nature. Following Landauer's transport theory and charge calculation based on two-dimensional electrostatics that incorporates negative momenta states from the drain terminal, an analytic expression for current as a function of terminal voltages is developed. The model interprets the non-linearity of access regions in non-self-aligned HEMTs. Effects of Joule heating with temperature-dependent thermal conductivity are incorporated in the model in a self-consistent manner. With a total of 26 input parameters, the analytic model offers reduced empiricism compared to existing GaN HEMT models. To verify the model, experimental I-V data of InAlN/GaN with InGaN back-barrier HEMTs with channel lengths of 42 and 105 nm are considered. Additionally, the model is validated against numerical I-V data obtained from DC hydrodynamic simulations of an unintentionally doped AlGaN-on-GaN HEMT with 50-nm gate length. The model is also verified against pulsed I-V measurements of a 150-nm T-gate GaN HEMT. Excellent agreement between the model and experimental and numerical results for output current, transconductance, and output conductance is demonstrated over a broad range of bias and temperature conditions.

1.
U. K.
Mishra
,
L.
Shen
,
T. E.
Kazior
, and
Y.-F.
Wu
, “
GaN-based RF power devices and amplifiers
,”
Proc. IEEE
96
,
287
(
2008
).
2.
D. S.
Lee
,
Z.
Liu
, and
T.
Palacios
, “
GaN high electron mobility transistors for sub-millimeter wave applications
,”
Jpn. J. Appl. Phys., Part 1
53
,
100212
(
2014
).
3.
M.
Gonschorek
,
J.-F.
Carlin
,
E.
Feltin
,
M.
Py
, and
N.
Grandjean
, “
High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures
,”
Appl. Phys. Lett.
89
,
062106
(
2006
).
4.
N.-Q.
Zhang
,
S.
Keller
,
G.
Parish
,
S.
Heikman
,
S.
DenBaars
, and
U.
Mishra
, “
High breakdown GaN HEMT with overlapping gate structure
,”
IEEE Electron Device Lett.
21
,
421
(
2000
).
5.
U. K.
Mishra
,
P.
Parikh
, and
Y.-F.
Wu
, “
AlGaN/GaN HEMTs–An overview of device operation and applications
,”
Proc. IEEE
90
,
1022
(
2002
).
6.
A.
Kranti
,
S.
Haldar
,
R.
Gupta
 et al., “
An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs
,”
Solid-State Electron.
46
,
621
(
2002
).
7.
M.
Li
and
Y.
Wang
, “
2-D analytical model for current-voltage characteristics and transconductance of AlGaN/GaN MODFETs
,”
IEEE Trans. Electron Devices
55
,
261
(
2008
).
8.
J.-W.
Lee
and
K. J.
Webb
, “
A temperature-dependent nonlinear analytic model for AlGaN-GaN HEMTs on SiC
,”
IEEE Trans. Microwave Theory Tech.
52
,
2
(
2004
).
9.
X.
Cheng
,
M.
Li
, and
Y.
Wang
, “
Physics-based compact model for AlGaN/GaN MODFETs with close-formed I–V and C–V characteristics
,”
IEEE Trans. Electron Devices
56
,
2881
(
2009
).
10.
X.
Cheng
and
Y.
Wang
, “
A surface-potential-based compact model for AlGaN/GaN MODFETs
,”
IEEE Trans. Electron Devices
58
,
448
(
2011
).
11.
N.
Karumuri
,
S.
Turuvekere
,
N.
DasGupta
, and
A.
DasGupta
, “
A continuous analytical model for 2-DEG charge density in AlGaN/GaN HEMTs valid for all bias voltages
,”
IEEE Trans. Electron Devices
61
,
2343
(
2014
).
12.
S.
Bajaj
,
O. F.
Shoron
,
P. S.
Park
,
S.
Krishnamoorthy
,
F.
Akyol
,
T.-H.
Hung
,
S.
Reza
,
E. M.
Chumbes
,
J.
Khurgin
, and
S.
Rajan
, “
Density-dependent electron transport and precise modeling of GaN high electron mobility transistors
,”
Appl. Phys. Lett.
107
,
153504
(
2015
).
13.
N.
Karumuri
,
G.
Dutta
,
N.
DasGupta
, and
A.
DasGupta
, “
A compact model of drain current for GaN HEMTs based on 2-DEG charge linearization
,”
IEEE Trans. Electron Devices
63
,
4226
(
2016
).
14.
S.
Khandelwal
,
C.
Yadav
,
S.
Agnihotri
,
Y. S.
Chauhan
,
A.
Curutchet
,
T.
Zimmer
,
J.-C.
De Jaeger
,
N.
Defrance
, and
T. A.
Fjeldly
, “
Robust surface-potential-based compact model for GaN HEMT IC design
,”
IEEE Trans. Electron Devices
60
,
3216
(
2013
).
15.
U.
Radhakrishna
, “
Modeling gallium-nitride based high electron mobility transistors: Linking device physics to high voltage and high frequency circuit design
,” Ph.D. thesis (
Massachusetts Institute of Technology
,
2016
).
16.
K.
Shinohara
,
D. C.
Regan
,
Y.
Tang
,
A. L.
Corrion
,
D. F.
Brown
,
J. C.
Wong
,
J. F.
Robinson
,
H. H.
Fung
,
A.
Schmitz
,
T. C.
Oh
 et al., “
Scaling of GaN HEMTs and Schottky diodes for submillimeter-wave MMIC applications
,”
IEEE Trans. Electron Devices
60
,
2982
(
2013
).
17.
D. S.
Lee
,
H.
Wang
,
A.
Hsu
,
M.
Azize
,
O.
Laboutin
,
Y.
Cao
,
J. W.
Johnson
,
E.
Beam
,
A.
Ketterson
,
M. L.
Schuette
 et al., “
Nanowire Channel InAlN/GaN HEMTs With High Linearity of gm and ft
,”
IEEE Electron Device Lett.
34
,
969
(
2013
).
18.
S.
Rakheja
,
M. S.
Lundstrom
, and
D. A.
Antoniadis
, “
An improved virtual-source-based transport model for quasi-ballistic transistors-Part I: Capturing effects of carrier degeneracy, drain-bias dependence of gate capacitance, and nonlinear channel-access resistance
,”
IEEE Trans. Electron Devices
62
,
2786
(
2015
).
19.
Y.
Tang
,
K.
Shinohara
,
D.
Regan
,
A.
Corrion
,
D.
Brown
,
J.
Wong
,
A.
Schmitz
,
H.
Fung
,
S.
Kim
, and
M.
Micovic
, “
Ultrahigh-speed gan high-electron-mobility transistors with ft/fmax of 454/444 GHz
,”
IEEE Electron Device Lett.
36
,
549
(
2015
).
20.
K.
Li
and
S.
Rakheja
, “
Optimal III-nitride HEMTs—From materials and device design to compact model of the 2DEG charge density
,”
Proc. SPIE
10104
,
1010418
(
2017
).
21.
M. S.
Lundstrom
and
D. A.
Antoniadis
, “
Compact models and the physics of nanoscale FETs
,”
IEEE Trans. Electron Devices
61
,
225
(
2014
).
22.
Sentaurus Device User Guide, Version M-2016.12, Synopsys, Inc., Montain View, CA,
2016
.
23.
C. K.
Yang
,
P.
Roblin
,
F. D.
Groote
,
S. A.
Ringel
,
S.
Rajan
,
J. P.
Teyssier
,
C.
Poblenz
,
Y.
Pei
,
J.
Speck
, and
U. K.
Mishra
, “
Pulsed-iv pulsed-rf cold-fet parasitic extraction of biased AlGaN/GaN HEMTs using large signal network analyzer
,”
IEEE Trans. Microwave Theory Tech.
58
,
1077
(
2010
).
24.
J.
Blakemore
, “
Approximations for Fermi-Dirac integrals, especially the function F1/2(η) used to describe electron density in a semiconductor
,”
Solid-State Electron.
25
,
1067
1076
(
1982
).
25.
R.
Kim
and
M.
Lundstrom
,
Notes on Fermi-Dirac Integrals
, 3rd ed. (
2008
), see https://nanohub.org/resources/5475.
26.
S.
Khandelwal
,
N.
Goyal
, and
T. A.
Fjeldly
, “
A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices
,”
IEEE Trans. Electron Devices
58
,
3622
(
2011
).
27.
S.
Kola
,
J. M.
Golio
, and
G. N.
Maracas
, “
An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling
,”
IEEE Electron Device Lett.
9
,
136
(
1988
).
28.
H. K.
Kwon
,
C.
Eiting
,
D.
Lambert
,
B.
Shelton
,
M.
Wong
,
T.-G.
Zhu
, and
R.
Dupuis
, “
Radiative recombination of two-dimensional electrons in a modulation-doped Al0.37Ga0.63N/GaN single heterostructure
,”
Appl. Phys. Lett.
75
,
2788
(
1999
).
29.
S-i.
Takagi
and
A.
Toriumi
, “
Quantitative understanding of inversion-layer capacitance in Si MOSFET's
,”
IEEE Trans. Electron Devices
42
,
2125
(
1995
).
30.
H. S.
Pal
,
K. D.
Cantley
,
S. S.
Ahmed
, and
M. S.
Lundstrom
, “
Influence of bandstructure and channel structure on the inversion layer capacitance of silicon and GaAs MOSFETs
,”
IEEE Trans. Electron Devices
55
,
904
(
2008
).
31.
A.
Majumdar
, “
Inversion gate capacitance of undoped single-gate and double-gate field-effect transistor geometries in the extreme quantum limit
,”
J. Appl. Phys.
117
,
205704
(
2015
).
32.
O.
Ambacher
,
J.
Smart
,
J.
Shealy
,
N.
Weimann
,
K.
Chu
,
M.
Murphy
,
W.
Schaff
,
L.
Eastman
,
R.
Dimitrov
,
L.
Wittmer
 et al., “
Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures
,”
J. Appl. Phys.
85
,
3222
(
1999
).
33.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J.
Shealy
,
N.
Weimann
,
K.
Chu
,
M.
Murphy
,
A.
Sierakowski
,
W.
Schaff
,
L.
Eastman
 et al., “
Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures
,”
J. Appl. Phys.
87
,
334
(
2000
).
34.
S.
Vitanov
,
V.
Palankovski
,
S.
Maroldt
, and
R.
Quay
, “
High-temperature modeling of AlGaN/GaN HEMTs
,”
Solid-State Electron.
54
,
1105
(
2010
).
35.
M.
Lundstrom
and
C.
Jeong
,
Near-Equilibrium Transport: Fundamentals and Applications
(
World Scientific
,
2013
).
36.
X.
Cheng
,
M.
Li
, and
Y.
Wang
, “
An analytical model for current–voltage characteristics of AlGaN/GaN HEMTs in presence of self-heating effect
,”
Solid-State Electron.
54
,
42
(
2010
).
37.
X.
Dang
,
P.
Asbeck
,
E.
Yu
,
G.
Sullivan
,
M.
Chen
,
B.
McDermott
,
K.
Boutros
, and
J.
Redwing
, “
Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor
,”
Appl. Phys. Lett.
74
,
3890
(
1999
).
38.
M.-J.
Chen
and
L.-F.
Lu
, “
A parabolic potential barrier-oriented compact model for the kBT layer's width in nano-MOSFETs
,”
IEEE Trans. Electron Devices
55
,
1265
(
2008
).
39.
M.-J.
Chen
,
H.-T.
Huang
,
Y.-C.
Chou
,
R.-T.
Chen
,
Y.-T.
Tseng
,
P.-N.
Chen
, and
C. H.
Diaz
, “
Separation of channel backscattering coefficients in nanoscale MOSFETs
,”
IEEE Trans. Electron Devices
51
,
1409
(
2004
).
40.
D.
Antoniadis
, “
On apparent electron mobility in Si nMOSFETs from diffusive to ballistic regime
,”
IEEE Trans. Electron Devices
63
,
2650
(
2016
).
41.
C.
Canali
,
G.
Majni
,
R.
Minder
, and
G.
Ottaviani
, “
Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature
,”
IEEE Trans. Electron Devices
22
,
1045
(
1975
).
42.
A.
Khakifirooz
,
O. M.
Nayfeh
, and
D.
Antoniadis
, “
A simple semiempirical short-channel MOSFET current–voltage model continuous across all regions of operation and employing only physical parameters
,”
IEEE Trans. Electron Devices
56
,
1674
(
2009
).
43.
S.
Ghosh
,
S. A.
Ahsan
,
Y. S.
Chauhan
, and
S.
Khandelwal
, “
Modeling of source/drain access resistances and their temperature dependence in GaN HEMTs
,” in
2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC)
(
IEEE
,
2016
), pp.
247
250
.
44.
W.
Xing
,
Z.
Liu
,
H.
Qiu
,
G. I.
Ng
, and
T.
Palacios
, “
Planar-nanostrip-channel InAlN/GaN HEMTs on Si with improved gm and ft linearity
,”
IEEE Electron Device Lett.
38
,
619
(
2017
).
45.
T.
Palacios
,
A.
Chini
,
D.
Buttari
,
S.
Heikman
,
A.
Chakraborty
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
, “
Use of double-channel heterostructures to improve the access resistance and linearity in GaN-based HEMTs
,”
IEEE Trans. Electron Devices
53
,
562
(
2006
).
46.
D. R.
Greenberg
and
J. A.
Del Alamo
, “
Velocity saturation in the extrinsic device: A fundamental limit in hfet's
,”
IEEE Trans. Electron Devices
41
,
1334
(
1994
).
47.
M.
Azize
,
A. L.
Hsu
,
O. I.
Saadat
,
M.
Smith
,
X.
Gao
,
S.
Guo
,
S.
Gradecak
, and
T.
Palacios
, “
High-electron-mobility transistors based on inaln/gan nanoribbons
,”
IEEE Electron Device Lett.
32
,
1680
(
2011
).
48.
R. J.
Trew
,
Y.
Liu
,
L.
Bilbro
,
W.
Kuang
,
R.
Vetury
, and
J. B.
Shealy
, “
Nonlinear source resistance in high-voltage microwave AlGaN/GaN hfets
,”
IEEE Trans. Microwave Theory Tech.
54
,
2061
(
2006
).
49.
U.
Radhakrishna
,
T.
Imada
,
T.
Palacios
, and
D.
Antoniadis
, “
Mit virtual source ganfet-high voltage (mvsg-hv) model: A physics based compact model for hv-gan hemts
,”
Phys. Status Solidi C
11
,
848
(
2014
).
50.
U.
Radhakrishna
,
L.
Wei
,
D.-S.
Lee
,
T.
Palacios
, and
D.
Antoniadis
, “
Physics-based GaN HEMT transport and charge model: Experimental verification and performance projection
,” in
2012 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2012
), pp.
13
16
.
51.
D. S.
Lee
,
X.
Gao
,
S.
Guo
,
D.
Kopp
,
P.
Fay
, and
T.
Palacios
, “
300-GHz InAlN/GaN HEMTs with InGaN back barrier
,”
IEEE Electron Device Lett.
32
,
1525
(
2011
).
52.
U.
Radhakrishna
and
D.
Antoniadis
, MIT Virtual Source GaNFET-RF (MVSG-RF) Model,
2014
.
53.
B. M.
Paine
,
S. R.
Polmanter
,
V. T.
Ng
,
N. T.
Kubota
, and
C. R.
Ignacio
, “
Fast-pulsed characterization of RF GaN HEMTs in lifetest systems
,”
IEEE Trans. Device Mater. Reliab.
17
,
130
(
2017
).
54.
C.
Baylis
and
L. P.
Dunleavy
, “
Understanding pulsed IV measurement waveforms
,” in
the 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, EDMO 2003
(
IEEE
,
2003
).
55.
A.
Majumdar
,
K.
Fushinobu
, and
K.
Hijikata
, “
Effect of gate voltage on hot-electron and hot phonon interaction and transport in a submicrometer transistor
,”
J. Appl. Phys.
77
,
6686
(
1995
).
56.
X.-D.
Wang
,
W.-D.
Hu
,
X.-S.
Chen
, and
W.
Lu
, “
The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs
,”
IEEE Trans. Electron Devices
59
,
1393
(
2012
).
57.
J.
Wu
,
W.
Walukiewicz
,
W.
Shan
,
K.
Yu
,
J.
Ager
,
I. I. I. S.
Li
,
E.
Haller
,
H.
Lu
, and
W. J.
Schaff
, “
Temperature dependence of the fundamental band gap of InN
,”
J. Appl. Phys.
94
,
4457
(
2003
).
58.
I.
Vurgaftman
,
J.
Meyer
, and
L.
Ram-Mohan
, “
Band parameters for III–V compound semiconductors and their alloys
,”
J. Appl. Phys.
89
,
5815
(
2001
).
59.
M. E.
Levinshtein
,
S. L.
Rumyantsev
, and
M. S.
Shur
,
Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe
(
John Wiley & Sons
,
2001
).
60.
M.
Farahmand
,
C.
Garetto
,
E.
Bellotti
,
K. F.
Brennan
,
M.
Goano
,
E.
Ghillino
,
G.
Ghione
,
J. D.
Albrecht
, and
P. P.
Ruden
, “
Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: Binaries and ternaries
,”
IEEE Trans. Electron Devices
48
,
535
(
2001
).
61.
V. M.
Polyakov
and
F.
Schwierz
, “
Influence of electron mobility modeling on DC IV characteristics of WZ-GaN MESFET
,”
IEEE Trans. Electron Devices
48
,
512
(
2001
).
62.
J. M.
Tirado
,
J. L.
Sanchez-Rojas
, and
J. I.
Izpura
, “
Trapping effects in the transient response of AlGaN/GaN HEMT devices
,”
IEEE Trans. Electron Devices
54
,
410
(
2007
).
63.
S.
Rakheja
, The mvs nanotransistor model: A case study in compact modeling,
2014
.
64.
S.
Mudanai
,
L.
Register
,
A.
Tasch
, and
S.
Banerjee
, “
Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs
,”
IEEE Electron Device Lett.
22
,
145
(
2001
).
65.
K.
Filippov
and
A.
Balandin
, “
The effect of the thermal boundary resistance on self-heating of AlGaN/GaN HFETs
,”
Mater. Res. Soc. Internet J. Nitride Semicond. Res.
8
,
e4
(
2003
).
66.
J.
Cho
,
E.
Bozorg-Grayeli
,
D. H.
Altman
,
M.
Asheghi
, and
K. E.
Goodson
, “
Low thermal resistances at GaN–SiC interfaces for HEMT technology
,”
IEEE Electron Device Lett.
33
,
378
(
2012
).
67.
J. C.
Freeman
, “
Channel temperature model for microwave AlGaN/GaN power HEMTs on SiC and sapphire
,” in
2004 IEEE MTT-S International Microwave Symposium Digest
(
IEEE
,
2004
), Vol.
3
, pp.
2031
2034
.
68.
H.
Hjelmgren
,
M.
Thorsell
,
K.
Andersson
, and
N.
Rorsman
, “
Extraction of an electrothermal mobility model for AlGaN/GaN heterostructures
,”
IEEE Trans. Electron Devices
59
,
3344
(
2012
).
69.
W.
Joyce
, “
Thermal resistance of heat sinks with temperature-dependent conductivity
,”
Solid-State Electron.
18
,
321
(
1975
).
You do not currently have access to this content.