The evolution and characterization of single-isolated-ion-strikes are investigated by combining atomistic simulations with selected-area electron diffraction (SAED) patterns generated from these simulations. Five molecular dynamics simulations are performed for a single 20 keV primary knock-on atom in bulk crystalline Si. The resulting cascade damage is characterized in two complementary ways. First, the individual cascade events are conventionally quantified through the evolution of the number of defects and the atomic (volumetric) strain associated with these defect structures. These results show that (i) the radiation damage produced is consistent with the Norgett, Robinson, and Torrens model of damage production and (ii) there is a net positive volumetric strain associated with the cascade structures. Second, virtual SAED patterns are generated for the resulting cascade-damaged structures along several zone axes. The analysis of the corresponding diffraction patterns shows the SAED spots approximately doubling in size, on average, due to broadening induced by the defect structures. Furthermore, the SAED spots are observed to exhibit an average radial outward shift between 0.33% and 0.87% depending on the zone axis. This characterization approach, as utilized here, is a preliminary investigation in developing methodologies and opportunities to link experimental observations with atomistic simulations to elucidate microstructural damage states.

1.
F.
Jelezko
and
J.
Wrachtrup
, “
Single defect centres in diamond: A review
,”
Phys. Status Solidi A
203
(
13
),
3207
3225
(
2006
).
2.
R.
Schirhagl
,
K.
Chang
,
M.
Loretz
, and
C. L.
Degen
, “
Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology
,”
Annu. Rev. Phys. Chem
65
,
83
105
(
2014
).
3.
C. A.
Volkert
and
A. M.
Minor
, “
Focused ion beam microscopy and micromachining
,”
MRS Bull.
32
(
5
),
389
399
(
2007
).
4.
C.
Claeys
and
E.
Simoen
,
Radiation Effects in Advanced Semiconductor Materials and Devices
(
Springer Science & Business Media
,
2013
), Vol.
57
.
5.
R.
Dingreville
,
K.
Hattar
, and
D.
Bufford
, “
Feasibility of observing and characterizing single ion strikes in microelectronic components
,”
Sandia Report No. SAND2015-9610
, Sandia National Laboratories,
2015
.
6.
P. D.
Townsend
,
P. J.
Chandler
, and
L.
Zhang
,
Optical Effects of Ion Implantation
(
Cambridge University Press
,
2006
), Vol. 13.
7.
M.
Schmidt
,
H.
de Meyer
,
P. J. J.
van Rensburg
,
W. E.
Meyer
, and
F. D.
Auret
, “
Introduction and annealing of primary defects in proton-bombarded n-GaN
,”
Phys. Status Solidi B
251
(
1
),
211
218
(
2014
).
8.
L.
Bøtter-Jensen
,
E.
Bulur
,
G. A. T.
Duller
, and
A. S.
Murray
, “
Advances in luminescence instrument systems
,”
Radiat. Meas.
32
(
5
),
523
528
(
2000
).
9.
K.
Hattar
,
D. C.
Bufford
, and
D. L.
Buller
, “
Concurrent in situ ion irradiation transmission electron microscope
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
338
,
56
65
(
2014
).
10.
X.
Yi
,
A. E.
Sand
,
D. R.
Mason
,
M. A.
Kirk
,
G.
Roberts
,
K.
Nordlund
, and
S. L.
Dudarev
, “
Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades
,”
Europhys. Lett.
110
(
3
),
36001
(
2015
).
11.
R.
Benedeck
, “
Spatial characteristics of displacement cascades in metals
,”
J. Appl. Phys.
52
(
9
),
5557
5565
(
1981
).
12.
G.
Xie
,
Y.
Xiong
,
B.
Li
,
Y.
Zhu
,
J.
Li
,
X.
Gu
,
Y.
Xiao
, and
M.
Tang
, “
Radiation damage effects by molecular dynamics simulation in BaTiO3 ferroelectric crystal
,”
IEEE Trans. Nucl. Sci.
59
(
1
),
1731
1737
(
2012
).
13.
P. H.
Chen
,
K.
Avchachov
,
K.
Nordlund
, and
K.
Pussi
, “
Molecular dynamics simulation of radiation damage in CaCd6 quasicrystal cubic approximant up to 10 keV
,”
J. Chem. Phys
138
(
23
),
234505
(
2013
).
14.
E. E.
Jay
,
P. C. M.
Fossati
,
M. J. D.
Rushton
, and
R. W.
Grimes
, “
Prediction and characterization of radiation damage in fluorapatite
,”
J. Mater. Chem. A
3
(
3
),
1164
1173
(
2015
).
15.
J. T.
Buchan
,
M.
Robinson
,
H. J.
Christie
,
D. L.
Roach
,
D. K.
Ross
, and
N. A.
Marks
, “
Molecular dynamics simulation of radiation damage cascades in diamond
,”
J. Appl. Phys.
117
(
24
),
245901
(
2015
).
16.
H. J.
Christie
,
M.
Robinson
,
D. L.
Roach
,
D. K.
Ross
,
I.
Suarez-Martinez
, and
N. A.
Marks
, “
Simulating radiation damage cascades in graphite
,”
Carbon
81
,
105
114
(
2015
).
17.
M.
Abu-Shams
,
W.
Haider
, and
I.
Shabib
, “
Evolution of displacement cascades in Fe-Cr structures with different [001] tilt grain boundaries
,”
Radiat. Eff. Defects Solids
172
(
5-6
),
364
378
(
2017
).
18.
S. P.
Coleman
,
D. E.
Spearot
, and
L.
Capolungo
, “
Virtual diffraction analysis of [010] symmetric tilt grain boundaries
,”
Modell. Simul. Mater. Sci. Eng.
21
,
055020
(
2013
).
19.
S. P.
Coleman
,
M. M.
Sichani
, and
D. E.
Spearot
, “
A computational algorithm to produce virtual X-ray and electron diffraction patterns from atomistic simulations
,”
JOM
66
(
3
),
408
416
(
2014
).
20.
S. J.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
21.
J.
Tersoff
, “
New empirical approach for the structure and energy of covalent systems
,”
Phys. Rev. B
37
(
12
),
6991
7000
(
1988
).
22.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
Stopping and Ranges of Ions in Matter
(
Pergamon Press
,
1985
), Vol. 1.
23.
A.
Caro
and
M.
Victoria
, “
Ion-electron interaction in molecular-dynamics cascades
,”
Phys. Rev. A
40
(
5
),
2287
2291
(
1989
).
24.
J.
Lindhard
and
M.
Scharff
, “
Energy dissipation by ions in the keV region
,”
Phys. Rev.
124
(
1
),
128
130
(
1961
).
25.
C. W.
Lee
and
A.
Schleife
, Correspondents currently at UIUC, private communication,
2017
.
26.
A.
Stukowski
, “
Visualization and analysis of atomistic data with OVITO - the open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
27.
L. B.
Munday
and
P. W.
Chung
, “
Large–scale atomic/molecular massively parallel simulator (LAMMPS) simulations of the molecular crystal αRDX
,”
Technical Report No. ARL–TR–6579
, U.S. Army Research Laboratory,
2013
.
28.
M.
Norgett
,
M.
Robinson
, and
I.
Torrens
, “
A proposed method of calculating displacement dose rates
,”
Nucl. Eng. Des.
33
(
1
),
50
54
(
1975
).
29.
L. A.
Miller
,
D. K.
Brice
,
A. K.
Prinja
, and
S. T.
Picraux
, “
Molecular dynamics simulations of bulk displacement threshold energies in Si
,”
Radiat. Eff. Defects Solids
129
,
127
131
(
1994
).
30.
A.
Stukowski
, “
Computational analysis methods in atomistic modeling of crystals
,”
JOM
66
(
3
),
399
407
(
2014
).
31.
S. K.
Rattan
,
P.
Singh
,
S.
Prakash
, and
J.
Singh
, “
Strain field due to point defects in metals
,”
Phys. Rev. B
47
(
2
),
599
607
(
1993
).
32.
S. J.
Zinkle
and
B. N.
Singh
, “
Analysis of displacement damage and defect production under cascade damage conditions
,”
J. Nucl. Mater.
199
(
3
),
173
191
(
1993
).
33.
H.
Trinkaus
,
B. N.
Singh
, and
A. J. E.
Foreman
, “
Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions
,”
J. Nucl. Mater.
249
(
2-3
),
91
102
(
1997
).
34.
H.
Trinkaus
,
B. N.
Singh
, and
A. J. E.
Foreman
, “
Progress in modelling the microstructural evolution in metals under cascade damage conditions
,”
J. Nucl. Mater.
283–287
,
89
98
(
2000
).
35.
B. N.
Singh
,
N. M.
Ghoniem
, and
H.
Trinkaus
, “
Experiment-based modelling of hardening and localized plasticity in metals irradiated under cascade damage conditions
,”
J. Nucl. Mater.
307–311
,
159
170
(
2002
).
36.
M. L.
Falk
and
J. S.
Langer
, “
Dynamics of viscoplastic deformation in amorphous solids
,”
Phys. Rev. E
57
(
6
),
7192
7205
(
1998
).
37.
F.
Shimizu
,
S.
Ogata
, and
J.
Li
, “
Theory of shear banding in metallic glasses and molecular dynamics calculations
,”
Mater. Trans
48
(
11
),
2923
2927
(
2007
).
38.
S. A.
Centoni
,
B.
Sadigh
,
G. J.
Gilmer
,
T. J.
Lenosky
,
T. D.
de la Rubia
, and
C. B.
Musgrave
, “
First-principles calculations of intrinsic defect formation volumes in silicon
,”
Phys. Rev. B
72
,
195206
(
2005
).
39.
M. J.
Hytch
and
A. M.
Minor
, “
Observing and measuring strain in nanostructures and devices with transmission electron microscopy
,”
MRS Bull.
39
(
2
),
138
146
(
2014
).
40.
J. W.
Edington
,
Practical Electron Microscopy in Materials Science
(
Van Nostrand Reinhold Co
.,
1976
).
41.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Brooks Cole
,
1976
).
42.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy Diffraction II
(
Plenum Press
,
1996
).
43.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
(
7
),
671
675
(
2012
).
44.
J.
Schindelin
,
I.
Arganda-Carreras
,
E.
Frise
,
V.
Kaynig
,
M.
Longair
,
T.
Pietzsch
,
S.
Preibisch
,
C.
Rueden
,
S.
Saalfeld
,
B.
Schmid
,
J. Y.
Tinevez
,
D. J.
White
,
V.
Hartenstein
,
P.
Tomancak
,
K.
Eliceiri
, and
A.
Cardona
, “
Fiji: An open-source platform for biological-image analysis
,”
Nat. Methods
9
(
7
),
676
682
(
2012
).
45.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM–The stopping and range of ions in matter
,”
Nucl. Instrum. Methods Phys. Res. Sect. B
268
(
11
),
1818
1823
(
2010
).

Supplementary Material

You do not currently have access to this content.