There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

1.
M. E.
Orazem
and
B.
Tribollet
,
Electrochemical Impedance Spectroscopy
, 2nd ed. (
John Wiley
,
2017
).
2.
E.
Barsoukov
and
J. R.
Macdonald
,
Impedance Spectroscopy: Theory, Experiment, and Applications
, 2nd ed. (
Wiley-Interscience
,
Hoboken, NJ
,
2005
).
3.
D. D.
Macdonald
,
Electrochim. Acta
51
,
1376
(
2006
).
4.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
5.
A. M.
Fajardo
and
N. S.
Lewis
,
J. Phys. Chem. B
101
,
11136
(
1997
).
6.
J.
Bisquert
and
R. A.
Marcus
, in
Multiscale Modelling of Organic and Hybrid Photovoltaics
, edited by
D.
Beljonne
and
J.
Cornil
(
Springer
,
Berlin, Heidelberg
,
2014
), p.
325
.
7.
J.
Bisquert
,
F.
Fabregat-Santiago
,
I.
Mora-Seró
,
G.
Garcia-Belmonte
,
E. M.
Barea
, and
E.
Palomares
,
Inorg. Chim. Acta
361
,
684
(
2008
).
8.
A.
Kohler
and
H.
Bässler
,
Electronic Processes in Organic Semiconductors: An Introduction
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
2015
).
9.
C.
Deibel
,
D.
Mack
,
J.
Gorenflot
,
A.
Scholl
,
S.
Krause
,
F.
Reinert
,
D.
Rauh
, and
V.
Dyakonov
,
Phys. Rev. B
81
,
085202
(
2010
).
10.
R. A.
Street
,
Y.
Yang
,
B. C.
Thompson
, and
I.
McCulloch
,
J. Phys. Chem. C
120
,
22169
(
2016
).
11.
R. A.
Street
and
D. M.
Davies
,
Appl. Phys. Lett.
102
,
043305
(
2013
).
12.
J.
Bisquert
,
G.
Garcia-Belmonte
, and
J.
Garcı́a-Cañadas
,
J. Chem. Phys.
120
,
6726
(
2004
).
13.
J. W.
Ondersma
and
T. W.
Hamann
,
J. Am. Chem. Soc.
133
,
8264
(
2011
).
14.
V.
Nadazdy
,
F.
Schauer
, and
K.
Gmucova
,
Appl. Phys. Lett.
105
,
142109
(
2014
).
15.
X.
Ramón Nóvoa
and
C.
Pérez
,
Electrochim. Acta
252
,
55
(
2017
).
16.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
17.
J. A.
Carr
and
S.
Chaudhary
,
Energy Environ. Sci.
6
,
3414
(
2013
).
18.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
19.
H.
Bässler
,
Phys. Status Solidi B
175
,
15
(
1993
).
20.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
21.
W. R.
Salaneck
,
S.
Stafstrom
, and
J. L.
Brédas
,
Conjugated Polymer Surfaces and Interfaces: Electronic and Chemical Structure of Interfaces for Polymer Light Emitting Devices
(
Cambridge University Press
,
1996
).
22.
Q.
Wang
,
S.
Ito
,
M.
Grätzel
,
F.
Fabregat-Santiago
,
I.
Mora-Seró
,
J.
Bisquert
,
T.
Bessho
, and
H.
Imai
,
J. Phys. Chem. B
110
,
25210
(
2006
).
23.
J. E. B.
Randles
,
Discuss. Faraday Soc.
1
,
11
(
1947
).
24.
E.
Barsoukov
and
J. R.
Macdonald
,
Impedance Spectroscopy
(
John Wiley & Sons, Inc.
,
2005
).
25.
M. A.
Lampert
and
R. B.
Schilling
, in
Semiconductors and Semimetals
, edited by
R. K.
Willardson
and
A. C.
Beer
(
Elsevier
,
1970
), Vol.
6
, p.
1
.
26.
O.
Zmeskal
,
F.
Schauer
, and
S.
Nespurek
,
J. Phys. C: Solid State Phys.
18
,
1873
(
1985
).
27.
F.
Schauer
,
R.
Novotný
, and
V.
Čech
,
Chem. Pap.
50
,
206
(
1996
).
28.
F.
Schauer
,
Sol. Energy Mater. Sol. Cells
87
,
235
(
2005
).
29.
H.
Li
,
L.
Duan
,
D.
Zhang
, and
Y.
Qiu
,
J. Phys. Chem. C
118
,
9990
(
2014
).
30.
F.
Schauer
,
S.
Nespurek
, and
H.
Valerian
,
J. Appl. Phys.
80
,
880
(
1996
).
31.
F.
Schauer
,
L.
Tkáč
,
M.
Ožvoldová
,
V.
Nadáždy
,
K.
Gmucová
,
K.
Végsö
,
M.
Tkáčová
, and
J.
Chlpík
,
J. Korean Phys. Soc.
68
,
563
(
2016
).
32.
F.
Schauer
,
M.
Tkáčová
,
V.
Nadáždy
,
K.
Gmucová
,
M.
Ožvoldová
,
L.
Tkáč
, and
J.
Chlpík
,
Polym. Degrad. Stab.
126
,
204
(
2016
).
33.
F.
Schauer
,
L.
Tkáč
,
M.
Ožvoldová
,
V.
Nádaždy
,
K.
Gmucová
,
M.
Jergel
, and
P.
Šiffalovič
,
AIP Adv.
7
,
055002
(
2017
).
34.
T.
Kirchartz
,
K.
Taretto
, and
U.
Rau
,
J. Phys. Chem. C
113
,
17958
(
2009
).
35.
R. A.
Street
,
Phys. Rev. B
84
,
075208
(
2011
).
36.
W. L.
Kalb
,
S.
Haas
,
C.
Krellner
,
T.
Mathis
, and
B.
Batlogg
,
Phys. Rev. B
81
,
155315
(
2010
).
37.
E. A.
Schiff
,
Sol. Energy Mater. Sol. Cells
78
,
567
(
2003
).
You do not currently have access to this content.