Boron containing GaAs, which is grown by metal organic vapour phase epitaxy, is studied at the atomic level by cross-sectional scanning tunneling microscopy (X-STM) and spectroscopy (STS). In topographic X-STM images, three classes of B related features are identified, which are attributed to individual B atoms on substitutional Ga sites down to the second layer below the natural {110} cleavage planes. The X-STM contrast of B atoms below the surface reflects primarily the structural modification of the GaAs matrix by the small B atoms. However, B atoms in the cleavage plane have in contrast to conventional isovalent impurities, such as Al and In, a strong influence on the local electronic structure similar to donors or acceptors. STS measurements show that B in the GaAs {110} surfaces gives rise to a localized state short below the conduction band (CB) edge while in bulk GaAs, the B impurity state is resonant with the CB. The analysis of BxGa1–xAs/GaAs quantum wells reveals a good crystal quality and shows that the incorporation of B atoms in GaAs can be controlled along the [001] growth direction at the atomic level. Surprisingly, the formation of the first and fourth nearest neighbor B pairs, which are oriented along the 110 directions, is strongly suppressed at a B concentration of 1% while the third nearest neighbor B pairs are found more than twice as often than expected for a completely spatially random pattern.

1.
J.
Wu
,
W.
Shan
, and
W.
Walukiewicz
,
Semicond. Sci. Technol.
17
,
860
(
2002
).
2.
K.
Alberi
,
J.
Wu
,
W.
Walukiewicz
,
K. M.
Yu
,
O. D.
Dubon
,
S. P.
Watkins
,
C. X.
Wang
,
X.
Liu
,
Y.-J.
Cho
, and
J.
Furdyna
,
Phys. Rev. B
75
,
045203
(
2007
).
3.
S.
Francoeur
,
G.
Sivaraman
,
Y.
Qiu
,
S.
Nikishin
, and
H.
Temkin
,
Appl. Phys. Lett.
72
,
1857
(
1998
).
4.
W.
Shan
,
W.
Walukiewicz
,
K. M.
Yu
,
J.
Wu
,
J. W.
Ager
 III
,
E. E.
Haller
,
H. P.
Xin
, and
C. W.
Tu
,
Appl. Phys. Lett.
76
,
3251
(
2000
).
5.
W. G.
Bi
and
C. W.
Tu
,
J. Appl. Phys
80
,
1934
(
1996
).
6.
S.
Francoeur
,
M.-J.
Seong
,
A.
Mascarenhas
,
S.
Tixier
,
M.
Adamcyk
, and
T.
Tiedje
,
Appl. Phys. Lett.
82
,
3874
(
2003
).
7.
S. P.
Svensson
,
H.
Hier
,
W. L.
Sarney
,
D.
Donetsky
,
D.
Wang
, and
G.
Belenky
,
J. Vac. Sci. Technol., B
30
,
02B109
(
2012
).
8.
K.
Wang
,
Y.
Gu
,
H. F.
Zhou
,
L. Y.
Zhang
,
C. Z.
Kang
,
M. J.
Wu
,
W. W.
Pan
,
P. F.
Lu
,
Q.
Gong
, and
S. M.
Wang
,
Sci. Rep.
4
,
5449
(
2014
).
9.
J.
Kopaczek
,
R.
Kudrawiec
,
M. P.
Polak
,
P.
Scharoch
,
M.
Birkett
,
T. D.
Veal
,
K.
Wang
,
Y.
Gu
,
Q.
Gong
, and
S.
Wang
,
Appl. Phys. Lett.
105
,
222104
(
2014
).
10.
P.
Pyykkö
and
M.
Atsumi
,
Chem.: Eur. J.
15
,
186
(
2009
).
11.
G.
Leibiger
,
V.
Gottschalch
,
V.
Riede
,
M.
Schubert
,
J. N.
Hilfiker
, and
T. E.
Tiwald
,
Phys. Rev. B
67
,
195205
(
2003
).
12.
W.
Shan
,
W.
Walukiewicz
,
J.
Wu
,
K. M.
Yu
,
J. W.
Ager
 III
,
S. X.
Li
,
E. E.
Haller
,
J. F.
Geisz
,
D. J.
Friedman
, and
S. R.
Kurtz
,
J. Appl. Phys.
93
,
2696
(
2003
).
13.
T.
Hofmann
,
M.
Schubert
,
G.
Leibiger
, and
V.
Gottschalch
,
Appl. Phys. Lett.
90
,
182110
(
2007
).
14.
G. L. W.
Hart
and
A.
Zunger
,
Phys. Rev. B
62
,
13522
(
2000
).
15.
J.
Teubert
,
P. J.
Klar
,
A.
Lindsay
, and
E. P.
O'Reilly
,
Phys. Rev. B
83
,
035203
(
2011
).
16.
L.
Ostheim
,
P. J.
Klar
,
S.
Liebich
,
P.
Ludewig
,
K.
Volz
, and
W.
Stolz
,
Semicond. Sci. Technol.
31
,
07LT01
(
2016
).
17.
S.
Petznick
,
L.
Ostheim
,
P. J.
Klar
,
S.
Liebich
,
K.
Volz
, and
W.
Stolz
,
Appl. Phys. Lett.
105
,
222105
(
2014
).
18.
P.
Ebert
,
B.
Engels
,
P.
Richard
,
K.
Schroeder
,
S.
Blügel
,
C.
Domke
,
M.
Heinrich
, and
K.
Urban
,
Phys. Rev. Lett.
77
,
2997
(
1996
).
19.
F. J.
Tilley
,
M.
Roy
,
P. A.
Maksym
,
P. M.
Koenraad
,
C. M.
Krammel
, and
J. M.
Ulloa
,
Phys. Rev. B
93
,
035313
(
2016
).
20.
C. M.
Krammel
,
M.
Roy
,
F. J.
Tilley
,
P. A.
Maksym
,
L. Y.
Zhang
,
P.
Wang
,
K.
Wang
,
Y. Y.
Li
,
S. M.
Wang
, and
P. M.
Koenraad
,
Phys. Rev. Mater.
1
,
034606
(
2017
).
21.
H. A.
McKay
,
R. M.
Feenstra
,
T.
Schmidtling
, and
U. W.
Pohl
,
Appl. Phys. Lett.
78
,
82
(
2001
).
22.
H. A.
McKay
,
R. M.
Feenstra
,
T.
Schmidtling
,
U. W.
Pohl
, and
J. F.
Geisz
,
J. Vac. Sci. Technol. B
19
,
1644
(
2001
).
23.
J. M.
Ulloa
,
P. M.
Koenraad
, and
M.
Hopkinson
,
Appl. Phys. Lett.
93
,
083103
(
2008
).
24.
A. P.
Wijnheijmer
,
O.
Makarovsky
,
J. K.
Garleff
,
L.
Eaves
,
R. P.
Campion
,
B. L.
Gallagher
, and
P. M.
Koenraad
,
Nano Lett.
10
,
4874
(
2010
).
25.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
26.
J. F.
Zheng
,
X.
Liu
,
N.
Newman
,
E. R.
Weber
,
D. F.
Ogletree
, and
M.
Salmeron
,
Phys. Rev. Lett.
72
,
1490
(
1994
).
27.
A. P.
Wijnheijmer
,
J. K.
Garleff
,
K.
Teichmann
,
M.
Wenderoth
,
S.
Loth
,
R. G.
Ulbrich
,
P. A.
Maksym
,
M.
Roy
, and
P. M.
Koenraad
,
Phys. Rev. Lett.
102
,
166101
(
2009
).
28.
P.
Kloth
and
M.
Wenderoth
,
Sci. Adv.
3
,
e1601552
(
2017
).
29.
N.
Ishida
,
M.
Jo
,
T.
Mano
,
Y.
Sakuma
,
T.
Noda
, and
D.
Fujita
,
Nanoscale
7
,
16773
(
2015
).
30.
A.
Lindsay
and
E. P.
O'Reilly
,
Phys. Rev. B
76
,
075210
(
2007
).
31.
P.
Manca
,
J. Phys. Chem. Solids
20
,
268
(
1961
).
32.
K.
Muraki
,
S.
Fukatsu
,
Y.
Shiraki
, and
R.
Ito
,
Appl. Phys. Lett.
61
,
557
(
1992
).

Supplementary Material

You do not currently have access to this content.