Molecular-like carbon-nitrogen complexes in GaAs are investigated both experimentally and theoretically. Two characteristic high-frequency stretching modes at 1973 and 2060 cm−1, detected by Fourier transform infrared absorption (FTIR) spectroscopy, appear in carbon- and nitrogen-implanted and annealed layers. From isotopic substitution, it is deduced that the chemical composition of the underlying complexes is CN2 and C2N, respectively. Piezospectroscopic FTIR measurements reveal that both centers have tetragonal symmetry. For density functional theory (DFT) calculations, linear entities are substituted for the As anion, with the axis oriented along the 100 direction, in accordance with the experimentally ascertained symmetry. The DFT calculations support the stability of linear N-C-N and C-C-N complexes in the GaAs host crystal in the charge states ranging from + 3 to –3. The valence bonds of the complexes are analyzed using molecular-like orbitals from DFT. It turns out that internal bonds and bonds to the lattice are essentially independent of the charge state. The calculated vibrational mode frequencies are close to the experimental values and reproduce precisely the isotopic mass splitting from FTIR experiments. Finally, the formation energies show that under thermodynamic equilibrium CN2 is more stable than C2N.

1.
M.
Jurisch
,
F.
Börner
,
T.
Bünger
,
S.
Eichler
,
T.
Flade
,
U.
Kretzer
,
A.
Köhler
,
J.
Stenzenberger
, and
B.
Weinert
,
J. Cryst. Growth
275
,
283
(
2005
).
2.
K.
Saito
,
E.
Tokumitsu
,
T.
Akatsuka
,
M.
Miyauchi
,
T.
Yamada
,
M.
Konagai
, and
K.
Takahashi
,
J. Appl. Phys.
64
,
3975
(
1988
).
3.
C. R.
Abernathy
,
S. J.
Pearton
,
R.
Caruso
,
F.
Ren
, and
J.
Kovalchik
,
Appl. Phys. Lett.
55
,
1750
(
1989
).
4.
M.
Weyers
,
M.
Sato
, and
H.
Ando
,
Jpn. J. Appl. Phys., Part 2
31
,
L853
(
1992
).
5.
D. B.
Jackrel
,
S. R.
Bank
,
H. B.
Yuen
,
M. A.
Wistey
,
J. S.
Harris
,
A. J.
Ptak
,
S. W.
Johnston
,
D. J.
Friedman
, and
S. R.
Kurtz
,
J. Appl. Phys.
101
,
114916
(
2007
).
6.
A.
Polimeni
,
G.
Baldassarri Höger von Högersthal
, and
M.
Bissiri
,
Semicond. Sci. Technol.
17
,
797
(
2002
).
7.
W.
Ulrici
and
B.
Clerjaud
,
Phys. Rev. B - Condens. Matter Mater. Phys.
72
,
045203
(
2005
).
8.
H. C.
Alt
,
A.
Kersch
, and
H. E.
Wagner
,
Phys. Status Solidi Basic Res.
250
,
324
(
2013
).
9.
H. C.
Alt
,
H. E.
Wagner
,
A.
Glacki
,
C.
Frank-Rotsch
, and
V.
Haeublein
,
Phys. Status Solidi Basic Res.
252
,
1827
(
2015
).
10.
W.
Ulrici
and
M.
Jurisch
,
Phys. Status Solidi Basic Res.
242
,
2433
(
2005
).
11.
H. C.
Alt
,
B.
Wiedemann
, and
K.
Bethge
,
Mater. Sci. Forum
258–263
,
867
(
1997
).
12.
S.
Limpijumnong
,
P.
Reunchan
,
A.
Janotti
, and
C. G.
Van De Walle
,
Phys. Rev. B - Condens. Matter Mater. Phys.
77
,
195209
(
2008
).
13.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
14.
F.
Knuth
,
C.
Carbogno
,
V.
Atalla
,
V.
Blum
, and
M.
Scheffler
,
Comput. Phys. Commun.
190
,
33
(
2015
).
15.
A.
Marek
,
V.
Blum
,
R.
Johanni
,
V.
Havu
,
B.
Lang
,
T.
Auckenthaler
,
A.
Heinecke
,
H.-J.
Bungartz
, and
H.
Lederer
,
J. Phys.: Condens. Matter
26
,
213201
(
2014
).
16.
T.
Auckenthaler
,
V.
Blum
,
H. J.
Bungartz
,
T.
Huckle
,
R.
Johanni
,
L.
Krämer
,
B.
Lang
,
H.
Lederer
, and
P. R.
Willems
,
Parallel Comput.
37
,
783
(
2011
).
17.
V.
Havu
,
V.
Blum
,
P.
Havu
, and
M.
Scheffler
,
J. Comput. Phys.
228
,
8367
(
2009
).
18.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
19.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
20.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
(
2015
).
21.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van De Walle
,
Rev. Mod. Phys.
86
,
253
(
2014
).
22.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
23.
For simplicity we keep the terminology 1973 and 2060 cm−1 band throughout the paper, although at 77 K and in some implanted layers the peak position is closer to 1972 and 2059 cm−1, respectively.
24.
A. A.
Kaplyanskii
,
Opt. Spectrosc.
16
,
329
(
1964
).
25.
The third and fourth highest vibrational mode (bending) could not be measured by FTIR experiments. Although the vibrational modes should be IR-active from symmetry, we assume that the oscillator strength is not high enough for detection.
26.
K. K.
Irikura
,
R. D.
Johnson
, and
R. N.
Kacker
,
J. Phys. Chem. A
109
,
8430
(
2005
).
27.
R.
Ramprasad
,
H.
Zhu
,
P.
Rinke
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
066404
(
2012
).

Supplementary Material

You do not currently have access to this content.