Enhancing the long term stable performance of silicon detectors used for monitoring the position and flux of the particle beams in high energy physics experiments requires a better knowledge of the nature, stability, and transformation properties of the radiation defects created over the operation time. We report the results of an electron spin resonance investigation in the nature, transformation, and long term stability of the irradiation paramagnetic point defects (IPPDs) produced by high fluence (2 × 1016 cm−2), high energy (27 MeV) electrons in n-type, P-doped standard floating zone silicon. We found out that both freshly irradiated and aged (i.e., stored after irradiation for 3.5 years at 250 K) samples mainly contain negatively charged tetravacancy and pentavacancy defects in the first case and tetravacancy defects in the second one. The fact that such small cluster vacancy defects have not been observed by irradiation with low energy (below 5 MeV) electrons, but were abundantly produced by irradiation with neutrons, strongly suggests the presence of the same mechanism of direct formation of small vacancy clusters by irradiation with neutrons and high energy, high fluence electrons, in agreement with theoretical predictions. Differences in the nature and annealing properties of the IPPDs observed between the 27 MeV electrons freshly irradiated, and irradiated and aged samples were attributed to the presence of a high concentration of divacancies in the freshly irradiated samples, defects which transform during storage at 250 K through diffusion and recombination processes.

1.
E. Fretwurst on behalf of the RD50 collaboration
,
Nucl. Instrum. Methods A
552
,
7
(
2005
).
2.
F.
Gianotti
,
M. L.
Mangano
, and
T.
Virdee
,
Eur. Phys. J. C
39
,
293
(
2005
).
3.
R.
Radu
,
I.
Pintilie
,
L. C.
Nistor
,
E.
Fretwurst
,
G.
Lindstroem
, and
L. F.
Makarenko
,
J. Appl. Phys.
117
,
164503
(
2015
).
4.
M.
Moll
, Ph.D. thesis, FB Physik,
University of Hamburg
,
1999
.
5.
J.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance
(
Wiley
,
New York
,
1994
).
6.
S. V.
Nistor
,
M.
Stefan
,
D.
Ghica
, and
E.
Goovaerts
,
Appl. Magn. Res.
39
(
1–2
),
87
(
2010
).
7.
P. G.
Baranov
,
H. J.
von Bardeleben
,
F.
Jelezko
, and
J.
Wachtrup
,
Magnetic Resonance of Semiconductors and Their Nanostructures. Basic and Advanced Applications
,
Springer Series in Materials Science
(
Springer Verlag GmbH
,
Austria
,
2017
), Vol.
253
.
8.
G. D.
Watkins
, in
Semiconductors and Semimetals
, edited by
M.
Stavola
(
Academic Press
,
San Diego
,
1999
), Vol.
51A
, Chap. 2, p.
93
.
9.
J. M.
Spaeth
and
H.
Overhof
, in
Point Defects in Semiconductors and Insulators
, Springer Series in Materials Science, edited by
R.
Hull
,
R. M.
Osgood
, and
J.
Parisi
(
Springer
,
2003
), Vol.
51
.
10.
O.
Madelung
and
M.
Schulz
, “
Landolt-Bornstein: Numerical data and functional relationships in science and technology
,” in
Impurities and Defects in Group IV Elements and III-V Compounds of New Series. Group III: Crystal and Solid State Physics, Semiconductors
(
Springer Verlag
,
Berlin
,
Heidelberg, New York, London, Paris, Tokyo, Hong Kong
,
1989
), Vol.
22b
.
11.
T.
Umeda
,
S.
Hagiwara
,
M.
Katagiri
,
N.
Mizuochi
, and
J.
Isoya
,
Physica B
376–377
,
249
(
2006
).
12.
T. A.
Kennedy
and
E. R.
Glaser
, in
Semiconductors and Semimetals
, edited by
M.
Stavola
(
Academic Press
,
San Diego
,
1999
), Vol.
51A
, Chap. 3, p.
93
.
13.
S. V.
Nistor
,
M.
Stefan
,
D.
Schoemaker
, and
G.
Dinca
,
Solid State Commun.
115
(
1
),
39
(
2000
).
14.
G. D.
Watkins
, in
Radiation Damage in Semiconductors
, edited by
P.
Baruch
(
Dunod
,
Paris
,
1965
), p.
97
.
15.
J. W.
Corbett
,
L. J.
Chang
,
Y. H.
Lee
,
C.
Weigel
,
J. C.
Bourgoin
,
J. C.
Corelli
, and
P. M.
Mooney
, “
The status of defect studies in silicon
,”
Inst. Phys. Conf. Ser.
31
,
1
(
1977
).
16.
See http://www.PTB.de for description of irradiation facilities.
17.
M.
Stefan
,
S. V.
Nistor
, and
J. N.
Barascu
,
J. Magn. Reson.
210
,
200
(
2011
).
18.
S. V.
Nistor
,
L. C.
Nistor
,
M.
Stefan
,
D.
Ghica
,
G.
Aldica
, and
J. N.
Barascu
,
Cryst. Growth Des.
11
,
5030
(
2011
).
19.
S. V.
Nistor
,
D.
Ghica
,
I.
Pintilie
, and
E.
Manaila
,
Rom. Rep. Phys.
65
(
3
),
812
(
2013
).
20.
N.
Almeleh
and
B.
Goldstein
,
Phys. Rev.
149
(
2
),
687
(
1966
).
21.
V. A.
Khramtsov
,
V. N.
Lomasov
,
Y. Y.
Pilkevich
,
M. P.
Vlasenko
, and
L. S.
Vlasenko
,
Phys. Status Solidi A
109
,
127
(
1988
).
22.
Y. H.
Lee
,
Y. M.
Kim
, and
J. W.
Corbett
,
Rad. Eff.
15
,
77
(
1972
).
23.
J. W.
Corbett
and
G. D.
Watkins
,
Phys. Rev. Lett.
7
(
8
),
314
(
1961
).
24.
G. D.
Watkins
and
J. W.
Corbett
,
Phys. Rev.
138
(
2
),
A543
(
1965
).
25.
E. G.
Sieverts
,
S. H.
Muller
, and
C. A. J.
Ammerlaan
,
Phys. Rev. B
18
(
12
),
6834
(
1978
).
26.
A. V.
Dvurechenskii
and
A. A.
Karanovich
,
Sov. Phys. Semicond.
19
(
11
),
1198
(
1985
).
27.
L. J.
Cheng
,
J. C.
Corelli
,
J. W.
Corbett
, and
G. D.
Watkins
,
Phys. Rev.
152
(
2
),
761
(
1966
).
28.
Y. H.
Lee
,
P. R.
Brosious
, and
J. W.
Corbett
,
Rad. Eff.
22
,
169
(
1974
).
29.
Y. H.
Lee
and
J. W.
Corbett
,
Phys. Rev. B
9
(
10
),
4351
(
1974
).
30.
W.
Jung
and
G. S.
Newell
,
Phys. Rev.
132
(
2
),
648
(
1963
).
31.
M.
Nisenoff
and
H. Y.
Fan
,
Phys. Rev.
128
(
4
),
1605
(
1962
).
32.
Y. H.
Lee
and
J. W.
Corbett
,
Phys. Rev. B
8
(
6
),
2810
(
1973
).
33.
E.
Wu
,
S.
Wu
,
J. C.
Mao
,
M. X.
Mao
, and
G. G.
Qin
,
Solid State Commun.
61
(
3
),
199
(
1987
).
34.
J. M.
Trombetta
and
G. D.
Watkins
,
Appl. Phys. Lett.
51
(
14
),
1103
(
1987
).
35.
J.
Coutinho
,
R.
Jones
,
P. R.
Briddon
,
S.
Oberg
,
L. I.
Murin
,
V. P.
Markevich
, and
J. L.
Lindstrom
,
Phys. Rev. B
65
,
014109
(
2001
).
36.
P. M.
Mooney
,
L. J.
Chang
,
M.
Suli
,
J. D.
Gersona
, and
J. W.
Corbett
,
Phys. Rev. B
15
(
8
),
3836
(
1977
).
37.
H.
Lutgemeier
and
K.
Schnitzke
,
Phys. Lett. A
25
,
232
(
1967
).
38.
Y. H.
Lee
and
J. W.
Corbett
,
Phys. Rev. B
13
(
6
),
2653
(
1976
).
39.
P. R.
Brosious
, in
International Conference on Defects and Radiation Effects in Semiconductors
, edited by
J. H.
Albany
(
The Institute of Physics
,
Bristol-London
,
1979
), Vol. 46, p.
248
.
40.
J. W.
Corbett
and
G. D.
Watkins
,
Phys. Rev.
138
,
A555
(
1965
).
42.
A. O.
Evwaraye
and
E.
Sun
,
J. Appl. Phys.
47
(
9
),
3776
(
1976
).
43.
J. G.
de Wit
,
E. G.
Sieverts
, and
C. A. J.
Ammerlaan
,
Phys. Rev. B
14
(
8
),
3494
(
1976
).
44.
E. G.
Sieverts
,
S. H.
Muller
, and
C. A. J.
Ammerlaan
,
Solid State Commun.
28
,
221
(
1978
).
45.
S. H.
Muller
,
G. M.
Tuynman
,
E. G.
Sieverts
, and
C. A. J.
Ammerlaan
,
Phys. Rev. B
25
,
25
(
1982
).
46.
E. G.
Sieverts
and
J. W.
Corbett
,
Solid State Commun.
43
(
1
),
41
(
1982
).
47.
P. F.
Ermolov
,
D. E.
Karmanov
,
A. K.
Leflat
,
V. M.
Manankov
,
M. M.
Merkin
, and
E. K.
Shabalina
,
Semiconductors
36
(
10
),
1114
(
2002
).
48.
P. F.
Lugakov
and
I. M.
Filipov
,
Rad. Eff.
90
(
3–4
),
297
(
1985
).
49.
G. S.
Hwang
and
W. A.
Goddaerd
 III
,
Phys. Rev. B
65
,
233205
(
2002
).
50.
J. L.
Lindstroem
,
L. I.
Murin
,
V. P.
Markevich
,
T.
Hallberg
, and
B. G.
Svensson
,
Physica B
273–274
,
291
(
1999
).
51.
V. P.
Markevich
,
A. R.
Peaker
,
S. B.
Lastovskii
,
L. I.
Murin
, and
J. L.
Lindstroem
,
J. Phys.: Condens. Matter
15
,
S2779
(
2003
).
52.
E. V.
Monakhov
,
B. S.
Avset
,
A.
Hallen
, and
B. G.
Svensson
,
Phys. Rev. B
65
,
233207
(
2002
).
53.
B. R.
Gossik
,
J. Appl. Phys.
30
(
8
),
1214
(
1959
).
54.
J. L.
Hastings
,
S. K.
Estreicher
, and
P. A.
Fedders
,
Phys. Rev. B
56
(
16
),
10215
(
1997
).
55.
D. V.
Makhov
and
L. J.
Lewis
,
Phys. Rev. Lett.
92
(
25
),
255504
(
2004
).
56.
H. N.
Yousif
,
D. L.
Cowan
, and
J. M.
Meese
,
J. Appl. Phys.
55
(
5
),
1359
(
1984
).
57.
S. R. G.
Christopoulos
,
E. N.
Sgourou
,
T.
Angeletos
,
R. V.
Vovk
,
A.
Chroneos
, and
C. A.
Londos
,
J. Mater. Sci.: Mater. Electron.
28
,
10295
(
2017
).
You do not currently have access to this content.