The paper investigates the magnetic behavior of chromium doped SnO2 Dilute Magnetic Semiconductor (DMS) nanoparticles, through structural, spectroscopic, and magnetic studies. A non-equilibrium solution combustion method is adopted to synthesize 0–5 at. % Cr doped SnO2 nanoparticles. The detailed spectroscopic studies on the system using micro-Raman spectroscopy, x-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy along with the structural analysis confirm the presence of Cr in 3+ oxidation state, which substitutes at Sn4+ site in SnO6 octahedra of the rutile structure. This doping is found to enhance the defects in the system, i.e., oxygen vacancies. All the synthesized SnO2 nanoparticles (with or without dopants) are found to exhibit Room Temperature Ferromagnetism (RTFM). This occurrence of RTFM is attributed to the magnetic exchange interaction through F-centers of oxygen vacancies as well as dopant magnetic impurities and explained through the Bound Magnetic Polaron (BMP) model of DMS systems. Nonetheless, as the doping of Cr is further increased beyond 2%, the solubility limit is achieved. This antiferromagnetic exchange interaction from interstitial Cr dopants dominates over the BMP mechanism and, hence, leads to the decrease in the net magnetic moment drastically.

1.
A.
Sundaresan
,
R.
Bhargavi
,
N.
Rangarajan
,
U.
Siddesh
, and
C. N. R.
Rao
, “
Ferromagnetism as a universal feature of nanoparticles of the otherwise non-magnetic oxides
,”
Phys. Rev. B: Condens. Matter
74
,
161306
(
2006
).
2.
S. B.
Ogale
, “
Dilute doping, defects, and ferromagnetism in metal oxide systems
,”
Adv. Mater.
22
,
3125
3155
(
2010
).
3.
J. K.
Furdyna
, “
Diluted magnetic semiconductors
,”
J. Appl. Phys.
64
,
R29
R64
(
1988
).
4.
S. A.
Ahmed
, “
Room-temperature ferromagnetism in pure and Mn doped SnO2 powders
,”
Solid State Commun.
150
,
2190
2193
(
2010
).
5.
X.-C. L.
Ze Xiong
,
S.-Y.
Zhuo
,
J.-H.
Yang
, and
E.-W.
Shi
, “
Oxygen enhanced ferromagnetism in Cr-doped ZnO films
,”
Appl. Phys. Lett.
99
,
052513
(
2011
).
6.
W.
Prellier
,
A.
Fouchet
, and
B.
Mercey
, “
Oxide-diluted magnetic semiconductors: A review of the experimental status
,”
J. Phys.: Condens. Matter
15
,
R1583
R1601
(
2003
).
7.
S. J.
Pearton
,
W. H.
Heo
,
M.
Ivill
,
D. P.
Norton
, and
T.
Steiner
, “
Dilute magnetic semiconducting oxides
,”
Semicond. Sci. Technol.
19
,
R59
R74
(
2004
).
8.
S. A.
Wolf
 et al, “
Spintronics: A spin-based electronics vision for the future
,”
Science
294
,
1488
1495
(
2001
).
9.
Ç.
Kilic
and
A.
Zunger
, “
Origins of coexistence of conductivity and transparency in SnO2
,”
Phys. Rev. Lett.
88
,
095501
(
2002
).
10.
S.
Ogale
 et al, “
High temperature ferromagnetism with a giant magnetic moment in transparent Co-doped SnO2−δ
,”
Phys. Rev. Lett.
91
,
077205
(
2003
).
11.
X.
Wang
,
Z.
Dai
, and
Z.
Zeng
, “
Search for ferromagnetism in SnO2 doped with transition metals (V, Mn, Fe, and Co)
,”
J. Phys.: Condens. Matter
20
,
045214
(
2008
).
12.
C.
Liu
,
X.
Zu
, and
W.
Zhou
, “
Magnetic interaction in Co-doped SnO2 nano-crystal powders
,”
J. Phys.: Condens. Matter
18
,
6001
(
2006
).
13.
W.
Wei
,
Y.
Dai
,
M.
Guo
,
Z.
Zhang
, and
B.
Huang
, “
Effects of oxygen vacancy on the magnetic properties of Cr-doped SnO2:Density functional investigation
,”
J. Solid State Chem.
183
,
3073
3077
(
2010
).
14.
K. C.
Patil
,
M. S.
Hegde
,
T.
Rattan
, and
S. T.
Aruna
,
Chemistry of Nanocrystalline Oxide Materials, Combustion Synthesis, Properties and Applications
(
World Scientific Publishing Co. Pvt. Ltd
.,
2008
).
15.
K. C.
Patil
, “
Advanced ceramics: Combustion synthesis and properties
,”
Bull. Mater. Sci.
16
,
533
554
(
1993
).
16.
V. B.
Kamble
and
A. M.
Umarji
, “
Correlating defect induced ferromagnetism and gas sensing properties of undoped tin oxide sensors
,”
Appl. Phys. Lett.
104
,
251912
(
2014
).
17.
S. H.
Sun
 et al, “
Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders
,”
Chem. Phys. Lett.
376
,
103
107
(
2003
).
18.
A.
Dieguez
,
A.
Romano-Rodriguez
,
A.
Vila
, and
J. R.
Morante
, “
The complete Raman spectrum of nanometric SnO2 particles
,”
J. Appl. Phys.
90
,
1550
1557
(
2001
).
19.
V. B.
Kamble
,
S. V.
Bhat
, and
A. M.
Umarji
, “
Investigating thermal stability of structural defects and its effects on d0 ferromagnetism in undoped SnO2
,”
J. Appl. Phys.
113
,
244307
(
2013
).
20.
J.
Mougin
,
T.
Le Bihan
, and
G.
Lucazeau
, “
High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy
,”
J. Phys. Chem. Solids
62
,
553
563
(
2001
).
21.
J.
Birnie
,
C.
Craggs
,
D. J.
Gardiner
, and
P. R.
Graves
, “
Ex situ and in situ determination of stress distributions in chromium oxide films by Raman microscopy
,”
Corros. Sci.
33
,
1
12
(
1992
).
22.
P. A.
Cox
,
Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties
(
OUP
,
Oxford
,
2010
).
23.
M. A. L.
Margionte
 et al, “
Nonlinear characteristics of Cr2O3, WO3, ZnO and CoO doped SnO2 varistors
,”
Mater. Lett.
60
,
142
146
(
2006
).
24.
S. K.
Misra
 et al, “
Cr3+ electron paramagnetic resonance study of Sn1−xCrxO2 (0.00≤x≤0.10)
,”
J. Appl. Phys.
105
,
07C514
(
2009
).
25.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
2005
).
26.
V. B.
Kamble
and
A. M.
Umarji
, “
Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals
,”
AIP Adv.
3
,
082120
082125
(
2013
).
27.
P. D.
Borges
,
L. M. R.
Scolfaro
,
H. W. L.
Alves
,
E. F.
da Silva
, Jr.
, and
L. V. C.
Assali
, “
Magnetic and electronic properties of Sn1–xCrxO2 diluted alloys
,”
Mater. Sci. Eng. B
176
,
1378
1381
(
2011
).
28.
J. M. D.
Coey
,
A. P.
Douvalis
,
C. B.
Fitzgerald
, and
M.
Venkatesan
, “
Ferromagnetism in Fe-doped SnO2 thin films
,”
Appl. Phys. Lett.
84
,
1332
1334
(
2004
).
29.
A. C.
Durst
,
R. N.
Bhatt
, and
P. A.
Wolff
, “
Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors
,”
Phys. Rev. B: Condens. Matter
65
,
235205
(
2002
).
You do not currently have access to this content.