The effects of hole injection in amorphous indium-gallium-zinc-oxide (a-IGZO) are analyzed by means of first-principles calculations. The injection of holes in the valence band tail states leads to their capture as a polaron, with high self-trapping energies (from 0.44 to 1.15 eV). Once formed, they mediate the formation of peroxides and remain localized close to the hole injection source due to the presence of a large diffusion energy barrier (of at least 0.6 eV). Their diffusion mechanism can be mediated by the presence of hydrogen. The capture of these holes is correlated with the low off-current observed for a-IGZO transistors, as well as with the difficulty to obtain a p-type conductivity. The results further support the formation of peroxides as being the root cause of Negative Bias Illumination Stress (NBIS). The strong self-trapping substantially reduces the injection of holes from the contact and limits the creation of peroxides from a direct hole injection. In the presence of light, the concentration of holes substantially rises and mediates the creation of peroxides, responsible for NBIS.

1.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Sci. Technol. Adv. Mater.
11
,
044305
(
2010
).
2.
J. Y.
Kwon
and
J. K.
Jeong
,
Semicond. Sci. Technol.
30
,
024002
(
2015
).
3.
J. K.
Jeong
,
J. Mater. Res.
28
,
2071
(
2013
).
4.
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Appl. Phys. Lett.
99
,
053505
(
2011
).
5.
B.
Ryu
,
H.-K.
Noh
,
E.-A.
Choi
, and
K. J.
Chang
,
Appl. Phys. Lett.
97
,
022108
(
2010
).
6.
H.-K.
Noh
,
K. J.
Chang
,
B.
Ryu
, and
W.-J.
Lee
,
Phys. Rev. B
84
,
115205
(
2011
).
7.
J. S.
Park
,
W.-J.
Maeng
,
H.-S.
Kim
, and
J.-S.
Park
,
Thin Solid Films
520
,
1679
(
2012
).
8.
P.
Migliorato
,
M. D. H.
Chowdhury
,
J. G.
Um
,
M.
Seok
, and
J.
Jang
,
Appl. Phys. Lett.
101
,
123502
(
2012
).
9.
S.
Lee
,
A.
Nathan
,
S.
Jeon
, and
J.
Robertson
,
Sci. Rep.
5
,
14902
(
2015
).
10.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
Phys. Status Solidi A
206
,
860
(
2009
).
11.
A.
de Jamblinne de Meux
,
A.
Bhoolokam
,
G.
Pourtois
,
J.
Genoe
, and
P.
Heremans
,
Phys. Status Solidi A
214
,
1600889
(
2017
).
12.
K.
Nomura
,
T.
Kamiya
,
E.
Ikenaga
,
H.
Yanagi
,
K.
Kobayashi
, and
H.
Hosono
,
J. Appl. Phys.
109
,
073726
(
2011
).
13.
W.
Korner
,
D. F.
Urban
, and
C.
Elsasser
,
J. Appl. Phys.
114
,
163704
(
2013
).
14.
S.
Sallis
,
K. T.
Butler
,
N. F.
Quackenbush
,
D. S.
Williams
,
M.
Junda
,
D. A.
Fischer
,
J. C.
Woicik
,
N. J.
Podraza
,
B. E.
White
,
A.
Walsh
, and
L. F. J.
Piper
,
Appl. Phys. Lett.
104
,
232108
(
2014
).
15.
J.
Robertson
and
Y.
Guo
,
Appl. Phys. Lett.
104
,
162102
(
2014
).
16.
H. J.
Kim
,
S. Y.
Park
,
H. Y.
Jung
,
B. G.
Son
,
C.-K.
Lee
,
C.-K.
Lee
,
J. H.
Jeong
,
Y.-G.
Mo
,
K. S.
Son
,
M. K.
Ryu
,
S.
Lee
, and
J. K.
Jeong
,
J. Phys. D: Appl. Phys.
46
,
055104
(
2013
).
17.
Y.
Kang
,
B. D.
Ahn
,
J. H.
Song
,
Y. G.
Mo
,
H.-H.
Nahm
,
S.
Han
, and
J. K.
Jeong
,
Adv. Electron. Mater.
1
,
1400006
(
2015
).
18.
H.-K.
Noh
,
J.-S.
Park
, and
K. J.
Chang
,
J. Appl. Phys.
113
,
063712
(
2013
).
19.
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
ECS J. Solid State Sci. Technol.
2
,
P5
(
2013
).
20.
W. H.
Han
,
Y. J.
Oh
,
K. J.
Chang
, and
J.-S.
Park
,
Phys. Rev. Appl.
3
,
044008
(
2015
).
21.
H.-H.
Nahm
,
Y.-S.
Kim
, and
D. H.
Kim
,
Phys. Status Solidi B
249
,
1277
(
2012
).
22.
J.
Hutter
,
M.
Iannuzzi
,
F.
Schiffmann
, and
J.
VandeVondele
,
Wiley Interdiscipl. Rev.: Comput. Mol. Sci.
4
,
15
(
2014
).
23.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
24.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
,
Phys. Rev. B
58
,
3641
(
1998
).
25.
M.
Krack
,
Theor. Chem. Acc.
114
,
145
(
2005
).
26.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
27.
A.
de Jamblinne de Meux
,
G.
Pourtois
,
J.
Genoe
, and
P.
Heremans
,
J. Phys. D: Appl. Phys.
48
,
435104
(
2015
).
28.
A. d. J.
de Meux
,
G.
Pourtois
,
J.
Genoe
, and
P.
Heremans
,
J. Phys.: Condens. Matter
29
,
255702
(
2017
).
29.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
30.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
5
,
3010
(
2009
).
31.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
32.
Y.
Youn
,
Y.
Kang
, and
S.
Han
,
Comput. Mater. Sci.
95
,
256
(
2014
).
33.
H.
Jónsson
,
G.
Mills
, and
K. W.
Jacobsen
, “
Nudged elastic band method for finding minimum energy paths of transitions
,” in
Classical and Quantum Dynamics in condensed Phase Simulations: Proceedings of the International School of Physics, Lerici, Villa Marigola, Italy, 7–18 July 1997
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific Publishing Co. Pte. Ltd.
,
1998
) pp.
385
404
.
34.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
35.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
36.
S.
Smidstrup
,
A.
Pedersen
,
K.
Stokbro
, and
H.
Jónsson
,
J. Chem. Phys.
140
,
214106
(
2014
).
37.
N. C.
Murphy
,
R.
Wortis
, and
W. A.
Atkinson
,
Phys. Rev. B - Condens. Matter Mater. Phys.
83
,
184206
(
2011
); e-print arXiv:1011.0659.
38.
J. B.
Varley
,
A.
Janotti
,
C.
Franchini
, and
C. G.
Van de Walle
,
Phys. Rev. B
85
,
081109
(
2012
).
39.
S.
Abrahams
,
R.
Collin
, and
W.
Lipscomb
,
Acta Crystallogr.
4
,
15
(
1951
).
40.
B.
Haas
and
H.
Oberhammer
,
J. Am. Chem. Soc.
106
,
6146
(
1984
).
41.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
J. Disp. Technol.
5
,
273
(
2009
).
42.
A.
Walsh
,
J. L.
Da Silva
, and
S.-H.
Wei
,
Chem. Mater.
21
,
5119
(
2009
).
43.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
44.
M. D.
Hossain Chowdhury
,
P.
Migliorato
, and
J.
Jang
,
Appl. Phys. Lett.
102
,
143506
(
2013
).
45.
M. P.
Hung
,
D.
Wang
,
J.
Jiang
, and
M.
Furuta
,
ECS Solid State Lett.
3
,
Q13
(
2014
).

Supplementary Material

You do not currently have access to this content.