The defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7–12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm−3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm−3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm−3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3–5) × 1015 cm−3, while the concentration of deep levels becomes 1.3 × 1015 cm−3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN.

1.
M. A.
Green
,
Y.
Hishikawa
,
W.
Warta
,
E. D.
Dunlop
,
D. H.
Levi
,
J.
Hohl-Ebinger
, and
A. W. H.
Ho-Baillie
,
Prog. Photovoltaics
25
,
668
(
2017
).
2.
F.
Dimroth
,
M.
Grave
,
P.
Beutel
,
U.
Fiedeler
,
C.
Karcher
,
T. N. D.
Tibbits
,
E.
Oliva
,
G.
Siefer
,
M.
Schachtner
,
A.
Wekkeli
,
A. W.
Bett
,
R.
Krause
,
M.
Piccin
,
N.
Blanc
,
C.
Drazek
,
E.
Guiot
,
B.
Ghyselen
,
T.
Salvetat
,
A.
Tauzin
,
T.
Signamarcheix
,
A.
Dobrich
,
T.
Hannappel
, and
K.
Schwarzburg
,
Prog. Photovoltaics
22
,
277
(
2014
).
3.
K.
Sasaki
,
T.
Agui
,
K.
Nakaido
,
N.
Takahashi
,
R.
Onitsuka
, and
T.
Takamoto
,
AIP Conf. Proc.
1556
,
22
25
(
2013
).
4.
NREL Press Release NR‐4514, 16 December
2014
.
5.
R. R.
King
,
D. C.
Law
,
K. M.
Edmondson
,
C. M.
Fetzer
,
G. S.
Kinsey
,
H.
Yoon
,
R. A.
Sherif
, and
N. H.
Karam
,
Appl. Phys. Lett.
90
,
183516
(
2007
).
6.
S. R.
Kurtz
,
D.
Myers
, and
J. M.
Olson
, in
Conference Record of the 26th IEEE Photovoltaics Specialists Conference, Anaheim, California
(
1997
), pp.
875
878
.
7.
M.
Yamaguchi
,
K. I.
Nishimura
,
T.
Sasaki
,
H.
Suzuki
,
K.
Arafune
,
N.
Kojima
,
Y.
Ohsita
,
Y.
Okada
,
A.
Yamamoto
,
T.
Takamoto
, and
K.
Araki
,
Sol. Energy
82
,
173
(
2008
).
8.
M.
Weyers
,
M.
Sato
, and
H.
Ando
,
Jpn. J. Appl. Phys., Part 2
31
,
L853
(
1992
).
9.
J.
Allen
,
V.
Sabnis
,
M.
Wiemer
, and
H.
Yuen
, in
9th International Conference on Concentrator Photovoltaic Systems
, Miyazaki, Japan (
2013
).
10.
A.
Aho
,
R.
Isoaho
,
A.
Tukiainen
,
V.
Polojärvi
,
T.
Aho
,
M.
Raappana
, and
M.
Guina
,
AIP Conf. Proc.
1679
,
050001
(
2015
).
11.
R.
Campesato
,
A.
Tukiainen
,
A.
Aho
,
G.
Gori
,
R.
Isoaho
,
E.
Greco
, and
M.
Guina
,
in E3S Web Conference
, edited by
A.
Fernandez
(EDP Sciences,
2017
), Vol. 16 p.
3003
.
12.
A.
Tukiainen
,
A.
Aho
,
G.
Gori
,
V.
Polojärvi
,
M.
Casale
,
E.
Greco
,
R.
Isoaho
,
T.
Aho
,
M.
Raappana
,
R.
Campesato
, and
M.
Guina
,
Prog. Photovoltaics
24
,
914
(
2016
).
13.
S.
Kurtz
,
S. W.
Johnston
,
J. F.
Geisz
,
D. J.
Friedman
, and
A. J.
Ptak
, in
31st IEEE Photovoltaics Specialists Conference and Exhibition, Lake Buena Vista
, Florida (
2005
).
14.
B.
Bouzazi
,
H.
Suzuki
,
N.
Kojima
,
Y.
Ohshita
, and
M.
Yamaguchi
,
Jpn. J. Appl. Phys.
49
,
121001
(
2010
).
15.
V.
Polojärvi
,
A.
Aho
,
A.
Tukiainen
,
M.
Raappana
,
T.
Aho
,
A.
Schramm
, and
M.
Guina
,
Sol. Energy Mater. Sol. Cells
149
,
213
(
2016
).
16.
S.
Kurtz
,
A. A.
Allerman
,
E. D.
Jones
,
J. M.
Gee
,
J. J.
Banas
, and
B. E.
Hammons
,
Appl. Phys. Lett.
74
,
729
(
1999
).
17.
N.
Miyashita
,
N.
Ahsan
, and
Y.
Okada
,
Phys. Status Solidi A
214
,
1600586
(
2017
).
18.
K.
Volz
,
D.
Lackner
,
I.
Németh
,
B.
Kunert
,
W.
Stolz
,
C.
Baur
,
F.
Dimroth
, and
A. W.
Bett
,
J. Cryst. Growth
310
,
2222
(
2008
).
19.
M. M.
Islam
,
N.
Miyashita
,
N.
Ahsan
,
T.
Sakurai
,
K.
Akimoto
, and
Y.
Okada
,
Appl. Phys. Lett.
105
,
112103
(
2014
).
20.
N.
Miyashita
,
N.
Ahsan
, and
Y.
Okada
,
Prog. Photovoltaics
24
,
28
(
2016
).
21.
D. B.
Jackrel
,
S. R.
Bank
,
H. B.
Yuen
,
M. A.
Wistey
,
J. S.
Harris
,
A. J.
Ptak
,
S. W.
Johnston
,
D. J.
Friedman
, and
S. R.
Kurtz
,
J. Appl. Phys.
101
,
114916
(
2007
).
22.
V.
Polojärvi
,
A.
Aho
,
A.
Tukiainen
,
A.
Schramm
, and
M.
Guina
,
Appl. Phys. Lett.
108
,
122104
(
2016
).
23.
E. V.
Nikitina
,
A. S.
Gudovskikh
,
A. A.
Lazarenko
,
E. V.
Pirogov
,
M. S.
Sobolev
,
K. S.
Zelentsov
,
I. A.
Morozov
, and
A. Y.
Egorov
,
Semiconductors
50
,
652
(
2016
).
24.
M.
Sato
and
Y.
Horikoshi
,
J. Appl. Phys.
66
,
851
(
1989
).
25.
R.
Cingolani
,
O.
Brandt
,
L.
Tapfer
,
G.
Scamarcio
,
G. C.
La Rocca
, and
K.
Ploog
,
Phys. Rev. B
42
,
3209
(
1990
).
26.
A. Y.
Egorov
,
A. E.
Zhukov
,
P. S.
Kop'ev
,
N. N.
Ledentsov
,
M. V.
Maksimov
, and
V. M.
Ustinov
,
Semiconductors
28
,
363
(
1994
).
27.
S. V.
Ivanov
,
A. A.
Toropov
,
T. V.
Shubina
,
A. V.
Lebedev
,
S. V.
Sorokin
,
A. A.
Sitnikova
,
P. S.
Kop'ev
,
G.
Reuscher
,
M.
Keim
,
F.
Bensing
,
A.
Waag
,
G.
Landwehr
,
G.
Pozina
,
J. P.
Bergman
, and
B.
Monemar
,
J. Cryst. Growth
214–215
,
109
(
2000
).
28.
S. V.
Ivanov
,
O. V.
Nekrutkina
,
S. V.
Sorokin
,
V. A.
Kaygorodov
,
T. V.
Shubina
,
A. A.
Toropov
,
P. S.
Kop'ev
,
G.
Reuscher
,
V.
Wagner
,
J.
Geurts
,
A.
Waag
, and
G.
Landwehr
,
Appl. Phys. Lett.
78
,
404
(
2001
).
29.
D. L.
Losee
,
J. Appl. Phys.
46
,
2204
(
1975
).
30.
D. V.
Lang
,
J. Appl. Phys.
45
,
3023
(
1974
).
31.
W. G. J. H. M.
Van Sark
,
L.
Korte
, and
F.
Roca
,
Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells
(
Springer
,
Berlin, Heidelberg
,
2012
).
32.
R.
Varache
,
C.
Leendertz
,
M. E.
Gueunier-Farret
,
J.
Haschke
,
D.
Muñoz
, and
L.
Korte
,
Sol. Energy Mater. Sol. Cells
141
,
14
(
2015
).
33.
J. F.
Geisz
,
J. M.
Olson
,
D. J.
Friedman
,
K. M.
Jones
,
R. C.
Reedy
, and
M. J.
Romero
, in
Proceedings of the 31st IEEE PVSC
(
2005
), pp.
695
698
.
34.
A. I.
Baranov
,
A. S.
Gudovskikh
,
E. V.
Nikitina
, and
A. Y.
Egorov
,
Tech. Phys. Lett.
39
,
1117
(
2013
).
35.
F. C.
Frank
and
J. H.
van der Merwe
,
Proc. R. Soc. A: Math. Phys. Eng. Sci.
198
,
216
(
1949
).
36.
J. H.
Van Der Merwe
,
J. Appl. Phys.
34
,
117
(
1963
).
37.
T.
Walter
,
R.
Herberholz
,
C.
Müller
, and
H. W.
Schock
,
J. Appl. Phys.
80
,
4411
(
1996
).
38.
M.
Dąbrowska-Szata
,
G.
Jóźwiak
, and
Ł.
Gelczuk
,
Mater. Sci.
23
,
625
(
2005
).
39.
S. W.
Johnston
,
R.
Ahenkiel
,
A.
Ptak
,
D.
Friedman
, and
S.
Kurtz
,
Report NREL/CP-520-33557
,
2003
.
40.
A.
Kosa
,
L.
Stuchlikova
,
L.
Harmatha
,
J.
Kovac
,
B.
Sciana
,
W.
Dawidowski
, and
M.
Tlaczala
,
Adv. Electr. Electron. Eng.
15
,
114
(
2017
).
41.
B.
Bouzazi
,
N.
Kojima
,
Y.
Ohshita
, and
M.
Yamaguchi
,
J. Alloys Compd.
552
,
469
(
2013
).
42.
D. J.
Friedman
,
A. J.
Ptak
,
S. R.
Kurtz
, and
J. F.
Geisz
, in
Proceedings of the 31st IEEE PVSC
(
2005
), p.
691
694
.
43.
P.
Omling
,
L.
Samuelson
, and
H. G.
Grimmeiss
,
J. Appl. Phys.
54
,
5117
(
1983
).
44.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
45.
A. E.
Zhukov
,
A. Y.
Egorov
,
V. M.
Ustinov
,
A. F.
Tsatsulnikov
,
M. V.
Maksimov
,
N. N.
Faleev
, and
P. S.
Kopev
,
Semiconductors
31
,
15
(
1997
).
You do not currently have access to this content.