We developed a theoretical approach that employs first-principles Hamiltonians, tight-binding Hamiltonians, and Green's function techniques to obtain energy levels arising from native point defects (NPDs) in InAs-GaSb and InAs-InAs1-xSbx strained layer superlattice (SLS) systems. In InAs and GaSb regions, we considered four types of NPDs—anion vacancy, cation vacancy, anion anti-site, and cation anti-site—as well as isoelectronic substitution at anion sites (Sb at the As site and As at the Sb site). Additionally, we considered three types of defects—the cation at the second anion site, the second anion at the cation site, and second anion vacancy—in the InAs1-xSbx alloy region of the SLS. For a selected few designs, we studied NPDs both in the bulk region and near the interfaces of the SLS. We have considered 12 designs of InAs-GaSb systems and two designs of InAs-InAs0.7Sb0.3 systems lattice-matched to the GaSb substrate. The calculated defect levels not only agreed well with available measurements, but also revealed the connection between mid-gap levels and specific NPDs. We further calculated defect formation energies both in compounds and in all superlattices considered above. Since the absolute value of defect formation energy depends considerably on growth conditions, we evaluated the formation energies in SLS with respect to their value in the corresponding bulk or alloy. The calculated defect formation energies, together with defect energy level results, allow us to identify a few promising SLS designs for high-performing photodetectors.

1.
D. L.
Smith
and
C.
Mailhiot
,
J. Appl. Phys.
62
,
2545
(
1987
);
D. L.
Smith
and
C.
Mailhiot
,
J. Vac. Sci. Technol. A
7
,
445
(
1989
).
2.
R. H.
Miles
,
J. N.
Schulman
,
D. H.
Chow
, and
T. C.
McGill
,
Semicond. Sci. Technol.
8
,
S102
(
1993
).
3.
R. H.
Miles
,
ONR Report 92-28942
,
1992
.
4.
C. H.
Grein
,
P. M.
Young
, and
H.
Ehrenreich
,
Appl. Phys. Lett.
61
,
2905
(
1992
).
5.
E.
Plis
,
N.
Gautam
,
S.
Myers
,
S. S.
Krishna
,
E. P.
Smith
,
S.
Johnson
, and
S.
Krishna
,
Proc. SPIE
8012
,
80120X
(
2011
).
6.
D. Z.
Ting
,
C. J.
Hill
,
A.
Soibel
,
S. A.
Keo
,
M.
Mumolo
,
J.
Nguyen
, and
S. D.
Gunapala
,
Appl. Phys. Lett.
95
,
023508
(
2009
).
7.
J. R.
Meyer
,
C. A.
Hoffman
,
F. L.
Bartoli
, and
L. R.
Ram-Mohan
,
Appl. Phys. Lett.
67
,
757
(
1995
).
8.
E. H.
Steenbergen
,
B. C.
Connelly
,
G. D.
Metcalfe
,
H.
Shen
,
M.
Wraback
,
D.
Lubyshev
,
Y.
Qiu
,
J. M.
Fastenau
,
A. W. K.
Liu
,
S.
Elhamri
,
O. O.
Cellek
, and
Y.-H.
Zhang
,
Appl. Phys. Lett.
99
,
251110
(
2011
).
9.
S. P.
Svensson
,
D.
Donetsky
,
D.
Wang
,
H.
Hier
,
F. J.
Crowne
, and
G.
Belenky
,
J. Cryst. Growth
334
,
103
(
2011
).
10.
J.
Pellegrino
and
R.
DeWames
,
Proc. SPIE
7298
,
72981U
(
2009
).
11.
S. P.
Svensson
,
D.
Donetsky
,
D.
Wang
,
P.
Maloney
, and
G.
Belenky
,
Proc. SPIE
7660
,
7660V
(
2010
).
12.
N.
Gautam
,
M.
Naydenkov
,
S.
Myers
,
A. V.
Barve
,
E.
Plis
,
T.
Rotter
,
L. R.
Dawson
, and
S.
Krishna
,
Appl. Phys. Lett.
98
,
121106
(
2011
);
A. M.
Hoang
,
G.
Chen
,
A.
Haddadi
,
S.
Abdollahi Pour
, and
M.
Razeghi
,
Appl. Phys. Lett.
100
,
211101
(
2012
).
13.
G.
Belenky
,
G.
Kipshidze
,
D.
Donetsky
,
S. P.
Svensson
,
W. L.
Sarney
,
H.
Hier
,
L.
Shterengas
,
D.
Wang
, and
Y.
Lin
,
Proc. SPIE
8012
,
80120W
(
2011
).
14.
Y.
Lin
,
D.
Donetsky
,
D.
Wang
,
D.
Westerfeld
,
G.
Kipshidze
,
L.
Shterengas
,
W. L.
Sarney
,
S. P.
Svensson
, and
G.
Belenky
,
J. Electron. Mater.
44
,
3360
(
2015
).
15.
D.
Zuo
,
R.
Liu
,
D.
Wasserman
,
J.
Mabon
,
Z.-Y.
He
,
S.
Liu
,
Y.-H.
Zhang
,
E. A.
Kadlec
,
B. V.
Olson
, and
E. A.
Shaner
,
Appl. Phys. Lett.
106
,
071107
(
2015
).
16.
B. V.
Olson
,
E. A.
Shaner
,
J. K.
Kim
,
J. F.
Klem
,
S. D.
Hawkins
,
L. M.
Murray
,
J. P.
Prineas
,
M. E.
Flatté
, and
T. F.
Boggess
,
Appl. Phys. Lett.
101
,
092109
(
2012
).
17.
Y.
Aytack
,
B. V.
Olson
,
J. K.
Kim
,
E. A.
Shaner
,
S. D.
Hawkins
,
J. F.
Klem
,
M. E.
Flatte
, and
T. F.
Boggess
,
Appl. Phys. Lett.
105
,
022107
(
2014
).
18.
Y.
Aytack
,
B. V.
Olson
,
J. K.
Kim
,
E. A.
Shaner
,
S. D.
Hawkins
,
J. F.
Klem
,
M. E.
Flatte
, and
T. F.
Boggess
,
Phys. Rev. Appl.
5
,
054016
(
2016
).
19.
B. V.
Olson
,
E. A.
Shaner
,
J. K.
Kim
,
J. F.
Klem
,
S. D.
Hawkins
,
M. E.
Flatte
, and
T. F.
Boggess
,
Appl. Phys. Lett.
103
,
052106
(
2013
).
20.
J.
Wróbel
,
Ł.
Ciura
,
M.
Motyka
,
F.
Szmulowicz
,
A.
Kolek
,
A.
Kowalewski
,
P.
Moszczyński
,
M.
Dyksik
,
P.
Madejczyk
,
S.
Krishna
, and
A.
Rogalski
,
Semicond. Sci. Technol.
30
,
115004
(
2015
).
21.
B.
Connelly
,
G. D.
Metcalfe
,
H.
Shen
,
M.
Wraback
,
C. L.
Canedy
,
I.
Vurgaftman
,
J. S.
Melinger
,
C. A.
Affouda
,
E. M.
Jackson
, and
J. A.
Nolde
,
J. Electron. Mater.
42
,
3203
(
2013
).
22.
W.
Shockley
and
R.
Read
,
Phys. Rev.
87
,
835
(
1952
).
23.
R.
Hall
,
Phys. Rev.
83
,
228
(
1951
);
R.
Hall
,
Phys. Rev.
88
,
387
(
1952
).
24.
C. G.
Van de Walle
,
P. H.
Denteneeer
,
Y.
Bar-Yam
, and
S. T.
Pantelides
,
Phys. Rev. B
39
,
10791
(
1989
).
25.
M. A.
Berding
,
A.
Sher
,
M.
van Schilfgaarde
,
P. M.
Rousseau
, and
W. E.
Spicer
,
Appl. Phys. Lett.
72
,
1492
(
1998
).
26.
M. A.
Berding
and
A.
Sher
,
Phys. Rev. B
56
,
3885
(
1997
).
27.
M. A.
Berding
,
M.
van Schilfgaarde
, and
A.
Sher
,
J. Electron. Mater.
26
,
683
(
1997
).
28.
S.
Krishnamurthy
and
M. A.
Berding
,
J. Appl. Phys.
90
(
3
),
848
(
2001
).
29.
L.
Colombo
,
Annu. Rev. Mater.
32
,
271
(
2002
).
30.
Y.
Wei
and
M.
Razeghi
,
Phys. Rev.
69
,
085316
(
2004
).
31.
E. G.
Wang
and
D. S.
Wang
,
J. Phys.: Condens. Matter
4
,
1311
(
1992
).
32.
V.
Virkkala
,
V.
Havu
,
F.
Tuomisto
, and
M. J.
Puska
,
Phys. Rev.
86
,
144101
(
2012
).
33.
Y. C.
Chang
,
R. B.
James
, and
J. W.
Davenport
,
Phys. Rev. B
73
,
035211
(
2006
).
34.
P. R.
Briddon
and
M. J.
Rayson
,
Phys. Status Solidi B
248
,
1309
(
2011
).
35.
A. D.
Becke
,
J. Chem. Phys.
98
(
2
),
1372
(
1993
).
36.
J.
Heyd
,
J. E.
Peralta
,
G. E.
Scuseria
, and
R. L.
Martin
,
J. Chem. Phys.
123
,
174101
(
2005
).
37.
S.
Krishnamurthy
,
D.
Van Orden
, and
Z. G.
Yu
,
J. Electron. Mater.
45
,
4574
(
2016
).
38.
S.
Krishnamurthy
and
Z. G.
Yu
,
Appl. Phys. Lett.
110
,
021113
(
2017
).
39.
Z. G.
Yu
and
S.
Krishnamurthy
,
AIP Adv.
7
,
065203
(
2017
).
40.
S.
Krishnamurthy
and
Z.-G.
Yu
,
AIP Adv.
7
,
065310
(
2017
).
41.
J.
Callaway
,
Energy Band Theory
(
Academic Press
,
New York
,
1964
), pp.
52
132
, 157–174
42.
See https://departments.icmab.es/leem/siesta/ for the details of the method, latest source code, and documentation;
see also,
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
43.
A.-B.
Chen
and
A.
Sher
,
Semiconductor Alloys
(
Plenum Press
,
New York
,
1995
).
44.
J. R.
Chelikowsky
and
M. L.
Cohen
,
Phys. Rev. B
14
,
556
(
1976
).
45.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R.
Ram-Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
46.
J.
Lagowski
,
D. G.
Lin
,
T.‐P.
Chen
,
M.
Skowronski
, and
H. C.
Gatos
,
Appl. Phys. Lett.
47
,
929
(
1985
).
47.
H.-P.
Komsa
and
A.
Pasquarello
,
J. Phys.: Condens. Matter
24
,
045801
(
2012
).
48.
P. A.
Schultz
and
O. A.
von Lilienfeld
,
Modell. Simul. Mater. Sci. Eng.
17
,
084007
(
2009
).
49.
P. A.
Schultz
,
Sandia Report, SAND2012-2675
,
2012
.
50.
J. E.
Northrup
and
S. B.
Zhang
,
Phys. Rev. B
47
,
6791
(
1993
).
51.
J. I.
Landman
,
C. G.
Morgan
,
J. T.
Schick
,
P.
Papoulias
, and
A.
Kumar
,
Phys. Rev. B
55
,
15581
(
1997
).
52.
P. A.
Schultz
,
Sandia Report, SAND2013-2477
,
2013
.
53.
A.
Hoglund
,
C. W. M.
Castleton
,
N.
Gothelid
,
B.
Johansson
, and
S.
Mirbt
,
Phys. Rev. B
74
,
075332
(
2006
).
You do not currently have access to this content.